227 lines
5.4 KiB
C++
227 lines
5.4 KiB
C++
#include "../solvespace.h"
|
|
|
|
double Bernstein(int k, int deg, double t)
|
|
{
|
|
switch(deg) {
|
|
case 1:
|
|
if(k == 0) {
|
|
return (1 - t);
|
|
} else if(k = 1) {
|
|
return t;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
if(k == 0) {
|
|
return (1 - t)*(1 - t);
|
|
} else if(k == 1) {
|
|
return 2*(1 - t)*t;
|
|
} else if(k == 2) {
|
|
return t*t;
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
if(k == 0) {
|
|
return (1 - t)*(1 - t)*(1 - t);
|
|
} else if(k == 1) {
|
|
return 3*(1 - t)*(1 - t)*t;
|
|
} else if(k == 2) {
|
|
return 3*(1 - t)*t*t;
|
|
} else if(k == 3) {
|
|
return t*t*t;
|
|
}
|
|
break;
|
|
}
|
|
oops();
|
|
}
|
|
|
|
SPolyCurve SPolyCurve::From(Vector p0, Vector p1) {
|
|
SPolyCurve ret;
|
|
ZERO(&ret);
|
|
ret.deg = 1;
|
|
ret.weight[0] = ret.weight[1] = 1;
|
|
ret.ctrl[0] = p0;
|
|
ret.ctrl[1] = p1;
|
|
return ret;
|
|
}
|
|
|
|
SPolyCurve SPolyCurve::From(Vector p0, Vector p1, Vector p2) {
|
|
SPolyCurve ret;
|
|
ZERO(&ret);
|
|
ret.deg = 2;
|
|
ret.weight[0] = ret.weight[1] = ret.weight[2] = 1;
|
|
ret.ctrl[0] = p0;
|
|
ret.ctrl[1] = p1;
|
|
ret.ctrl[2] = p2;
|
|
return ret;
|
|
}
|
|
|
|
SPolyCurve SPolyCurve::From(Vector p0, Vector p1, Vector p2, Vector p3) {
|
|
SPolyCurve ret;
|
|
ZERO(&ret);
|
|
ret.deg = 3;
|
|
ret.weight[0] = ret.weight[1] = ret.weight[2] = ret.weight[3] = 1;
|
|
ret.ctrl[0] = p0;
|
|
ret.ctrl[1] = p1;
|
|
ret.ctrl[2] = p2;
|
|
ret.ctrl[3] = p3;
|
|
return ret;
|
|
}
|
|
|
|
Vector SPolyCurve::Start(void) {
|
|
return ctrl[0];
|
|
}
|
|
|
|
Vector SPolyCurve::Finish(void) {
|
|
return ctrl[deg];
|
|
}
|
|
|
|
Vector SPolyCurve::EvalAt(double t) {
|
|
Vector pt = Vector::From(0, 0, 0);
|
|
double d = 0;
|
|
|
|
int i;
|
|
for(i = 0; i <= deg; i++) {
|
|
double B = Bernstein(i, deg, t);
|
|
pt = pt.Plus(ctrl[i].ScaledBy(B*weight[i]));
|
|
d += weight[i]*B;
|
|
}
|
|
pt = pt.ScaledBy(1.0/d);
|
|
return pt;
|
|
}
|
|
|
|
void SPolyCurve::MakePwlInto(List<Vector> *l) {
|
|
l->Add(&(ctrl[0]));
|
|
MakePwlWorker(l, 0.0, 1.0);
|
|
}
|
|
|
|
void SPolyCurve::MakePwlWorker(List<Vector> *l, double ta, double tb) {
|
|
Vector pa = EvalAt(ta);
|
|
Vector pb = EvalAt(tb);
|
|
|
|
// Can't test in the middle, or certain cubics would break.
|
|
double tm1 = (2*ta + tb) / 3;
|
|
double tm2 = (ta + 2*tb) / 3;
|
|
|
|
Vector pm1 = EvalAt(tm1);
|
|
Vector pm2 = EvalAt(tm2);
|
|
|
|
double d = max(pm1.DistanceToLine(pa, pb.Minus(pa)),
|
|
pm2.DistanceToLine(pa, pb.Minus(pa)));
|
|
|
|
double tol = SS.chordTol/SS.GW.scale;
|
|
|
|
double step = 1.0/SS.maxSegments;
|
|
if((tb - ta) < step || d < tol) {
|
|
// A previous call has already added the beginning of our interval.
|
|
l->Add(&pb);
|
|
} else {
|
|
double tm = (ta + tb) / 2;
|
|
MakePwlWorker(l, ta, tm);
|
|
MakePwlWorker(l, tm, tb);
|
|
}
|
|
}
|
|
|
|
void SPolyCurve::Reverse(void) {
|
|
int i;
|
|
for(i = 0; i < (deg+1)/2; i++) {
|
|
SWAP(Vector, ctrl[i], ctrl[deg-i]);
|
|
SWAP(double, weight[i], weight[deg-i]);
|
|
}
|
|
}
|
|
|
|
void SPolyCurveList::Clear(void) {
|
|
l.Clear();
|
|
}
|
|
|
|
SPolyCurveLoop SPolyCurveLoop::FromCurves(SPolyCurveList *spcl, bool *notClosed)
|
|
{
|
|
SPolyCurveLoop loop;
|
|
ZERO(&loop);
|
|
|
|
if(spcl->l.n < 1) return loop;
|
|
spcl->l.ClearTags();
|
|
|
|
SPolyCurve *first = &(spcl->l.elem[0]);
|
|
first->tag = 1;
|
|
loop.l.Add(first);
|
|
Vector start = first->Start();
|
|
Vector hanging = first->Finish();
|
|
|
|
spcl->l.RemoveTagged();
|
|
|
|
while(spcl->l.n > 0 && !hanging.Equals(start)) {
|
|
int i;
|
|
for(i = 0; i < spcl->l.n; i++) {
|
|
SPolyCurve *test = &(spcl->l.elem[i]);
|
|
|
|
if((test->Finish()).Equals(hanging)) {
|
|
test->Reverse();
|
|
}
|
|
if((test->Start()).Equals(hanging)) {
|
|
test->tag = 1;
|
|
loop.l.Add(test);
|
|
hanging = test->Finish();
|
|
spcl->l.RemoveTagged();
|
|
break;
|
|
}
|
|
}
|
|
if(i >= spcl->l.n) {
|
|
// Didn't find the next curve in the loop
|
|
*notClosed = true;
|
|
return loop;
|
|
}
|
|
}
|
|
if(hanging.Equals(start)) {
|
|
*notClosed = false;
|
|
} else {
|
|
*notClosed = true;
|
|
}
|
|
|
|
return loop;
|
|
}
|
|
|
|
SSurface SSurface::FromExtrusionOf(SPolyCurve *spc, Vector t0, Vector t1) {
|
|
SSurface ret;
|
|
ZERO(&ret);
|
|
|
|
ret.degm = spc->deg;
|
|
ret.degn = 1;
|
|
|
|
int i;
|
|
for(i = 0; i <= ret.degm; i++) {
|
|
ret.ctrl[i][0] = (spc->ctrl[i]).Plus(t0);
|
|
ret.weight[i][0] = spc->weight[i];
|
|
|
|
ret.ctrl[i][1] = (spc->ctrl[i]).Plus(t1);
|
|
ret.weight[i][1] = spc->weight[i];
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
SShell SShell::FromExtrusionOf(SPolyCurveList *spcl, Vector t0, Vector t1) {
|
|
SShell ret;
|
|
ZERO(&ret);
|
|
|
|
// Find the plane that contains our input section.
|
|
|
|
// Group the input curves into loops; this will reverse some of the
|
|
// curves if necessary for consistent (but not necessarily correct yet)
|
|
// direction.
|
|
|
|
// Generate a polygon from the curves, and use this to test how many
|
|
// times each loop is enclosed. Then set the direction (cw/ccw) to
|
|
// be correct for outlines/holes, so that we generate correct normals.
|
|
|
|
// Now generate all the surfaces, top/bottom planes plus extrusions.
|
|
|
|
// And now all the curves, trimming the top and bottom and their extrusion
|
|
|
|
// And the lines, trimming adjacent extrusion surfaces.
|
|
return ret;
|
|
}
|
|
|
|
|