1269 lines
44 KiB
C++
1269 lines
44 KiB
C++
//-----------------------------------------------------------------------------
|
|
// The 2d vector output stuff that isn't specific to any particular file
|
|
// format: getting the appropriate lines and curves, performing hidden line
|
|
// removal, calculating bounding boxes, and so on. Also raster and triangle
|
|
// mesh output.
|
|
//
|
|
// Copyright 2008-2013 Jonathan Westhues.
|
|
//-----------------------------------------------------------------------------
|
|
#include "solvespace.h"
|
|
#include "config.h"
|
|
|
|
void SolveSpaceUI::ExportSectionTo(const Platform::Path &filename) {
|
|
Vector gn = (SS.GW.projRight).Cross(SS.GW.projUp);
|
|
gn = gn.WithMagnitude(1);
|
|
|
|
Group *g = SK.GetGroup(SS.GW.activeGroup);
|
|
g->GenerateDisplayItems();
|
|
if(g->displayMesh.IsEmpty()) {
|
|
Error(_("No solid model present; draw one with extrudes and revolves, "
|
|
"or use Export 2d View to export bare lines and curves."));
|
|
return;
|
|
}
|
|
|
|
// The plane in which the exported section lies; need this because we'll
|
|
// reorient from that plane into the xy plane before exporting.
|
|
Vector origin, u, v, n;
|
|
double d;
|
|
|
|
SS.GW.GroupSelection();
|
|
auto const &gs = SS.GW.gs;
|
|
if((gs.n == 0 && g->activeWorkplane != Entity::FREE_IN_3D)) {
|
|
Entity *wrkpl = SK.GetEntity(g->activeWorkplane);
|
|
origin = wrkpl->WorkplaneGetOffset();
|
|
n = wrkpl->Normal()->NormalN();
|
|
u = wrkpl->Normal()->NormalU();
|
|
v = wrkpl->Normal()->NormalV();
|
|
} else if(gs.n == 1 && gs.faces == 1) {
|
|
Entity *face = SK.GetEntity(gs.entity[0]);
|
|
origin = face->FaceGetPointNum();
|
|
n = face->FaceGetNormalNum();
|
|
if(n.Dot(gn) < 0) n = n.ScaledBy(-1);
|
|
u = n.Normal(0);
|
|
v = n.Normal(1);
|
|
} else if(gs.n == 3 && gs.vectors == 2 && gs.points == 1) {
|
|
Vector ut = SK.GetEntity(gs.entity[0])->VectorGetNum(),
|
|
vt = SK.GetEntity(gs.entity[1])->VectorGetNum();
|
|
ut = ut.WithMagnitude(1);
|
|
vt = vt.WithMagnitude(1);
|
|
|
|
if(fabs(SS.GW.projUp.Dot(vt)) < fabs(SS.GW.projUp.Dot(ut))) {
|
|
swap(ut, vt);
|
|
}
|
|
if(SS.GW.projRight.Dot(ut) < 0) ut = ut.ScaledBy(-1);
|
|
if(SS.GW.projUp. Dot(vt) < 0) vt = vt.ScaledBy(-1);
|
|
|
|
origin = SK.GetEntity(gs.point[0])->PointGetNum();
|
|
n = ut.Cross(vt);
|
|
u = ut.WithMagnitude(1);
|
|
v = (n.Cross(u)).WithMagnitude(1);
|
|
} else {
|
|
Error(_("Bad selection for export section. Please select:\n\n"
|
|
" * nothing, with an active workplane "
|
|
"(workplane is section plane)\n"
|
|
" * a face (section plane through face)\n"
|
|
" * a point and two line segments "
|
|
"(plane through point and parallel to lines)\n"));
|
|
return;
|
|
}
|
|
SS.GW.ClearSelection();
|
|
|
|
n = n.WithMagnitude(1);
|
|
d = origin.Dot(n);
|
|
|
|
SEdgeList el = {};
|
|
SBezierList bl = {};
|
|
|
|
// If there's a mesh, then grab the edges from it.
|
|
g->runningMesh.MakeEdgesInPlaneInto(&el, n, d);
|
|
|
|
// If there's a shell, then grab the edges and possibly Beziers.
|
|
bool export_as_pwl = SS.exportPwlCurves || fabs(SS.exportOffset) > LENGTH_EPS;
|
|
g->runningShell.MakeSectionEdgesInto(n, d, &el, export_as_pwl ? NULL : &bl);
|
|
|
|
// All of these are solid model edges, so use the appropriate style.
|
|
SEdge *se;
|
|
for(se = el.l.First(); se; se = el.l.NextAfter(se)) {
|
|
se->auxA = Style::SOLID_EDGE;
|
|
}
|
|
SBezier *sb;
|
|
for(sb = bl.l.First(); sb; sb = bl.l.NextAfter(sb)) {
|
|
sb->auxA = Style::SOLID_EDGE;
|
|
}
|
|
|
|
// Remove all overlapping edges/beziers to merge the areas they describe.
|
|
el.CullExtraneousEdges(/*both=*/true);
|
|
bl.CullIdenticalBeziers(/*both=*/true);
|
|
|
|
// Collect lines and beziers with custom style & export.
|
|
for(auto &ent : SK.entity) {
|
|
Entity *e = &ent;
|
|
if (!e->IsVisible()) continue;
|
|
if (e->style.v < Style::FIRST_CUSTOM) continue;
|
|
if (!Style::Exportable(e->style.v)) continue;
|
|
if (!e->IsInPlane(n,d)) continue;
|
|
if (export_as_pwl) {
|
|
e->GenerateEdges(&el);
|
|
} else {
|
|
e->GenerateBezierCurves(&bl);
|
|
}
|
|
}
|
|
|
|
// Only remove half of the overlapping edges/beziers to support TTF Stick Fonts.
|
|
el.CullExtraneousEdges(/*both=*/false);
|
|
bl.CullIdenticalBeziers(/*both=*/false);
|
|
|
|
// And write the edges.
|
|
VectorFileWriter *out = VectorFileWriter::ForFile(filename);
|
|
if(out) {
|
|
// parallel projection (no perspective), and no mesh
|
|
ExportLinesAndMesh(&el, &bl, NULL,
|
|
u, v, n, origin, 0,
|
|
out);
|
|
}
|
|
el.Clear();
|
|
bl.Clear();
|
|
}
|
|
|
|
// This is an awful temporary hack to replace Constraint::GetEdges until we have proper
|
|
// export through Canvas.
|
|
class GetEdgesCanvas : public Canvas {
|
|
public:
|
|
Camera camera;
|
|
SEdgeList *edges;
|
|
|
|
const Camera &GetCamera() const override {
|
|
return camera;
|
|
}
|
|
|
|
void DrawLine(const Vector &a, const Vector &b, hStroke hcs) override {
|
|
edges->AddEdge(a, b, Style::CONSTRAINT);
|
|
}
|
|
void DrawEdges(const SEdgeList &el, hStroke hcs) override {
|
|
for(const SEdge &e : el.l) {
|
|
edges->AddEdge(e.a, e.b, Style::CONSTRAINT);
|
|
}
|
|
}
|
|
void DrawVectorText(const std::string &text, double height,
|
|
const Vector &o, const Vector &u, const Vector &v,
|
|
hStroke hcs) override {
|
|
auto traceEdge = [&](Vector a, Vector b) { edges->AddEdge(a, b, Style::CONSTRAINT); };
|
|
VectorFont::Builtin()->Trace(height, o, u, v, text, traceEdge, camera);
|
|
}
|
|
|
|
void DrawQuad(const Vector &a, const Vector &b, const Vector &c, const Vector &d,
|
|
hFill hcf) override {
|
|
// Do nothing
|
|
}
|
|
|
|
bool DrawBeziers(const SBezierList &bl, hStroke hcs) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawOutlines(const SOutlineList &ol, hStroke hcs, DrawOutlinesAs drawAs) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawPoint(const Vector &o, hStroke hcs) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawPolygon(const SPolygon &p, hFill hcf) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawMesh(const SMesh &m, hFill hcfFront, hFill hcfBack = {}) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawFaces(const SMesh &m, const std::vector<uint32_t> &faces, hFill hcf) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawPixmap(std::shared_ptr<const Pixmap> pm,
|
|
const Vector &o, const Vector &u, const Vector &v,
|
|
const Point2d &ta, const Point2d &tb, hFill hcf) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void InvalidatePixmap(std::shared_ptr<const Pixmap> pm) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
};
|
|
|
|
void SolveSpaceUI::ExportViewOrWireframeTo(const Platform::Path &filename, bool exportWireframe) {
|
|
SEdgeList edges = {};
|
|
SBezierList beziers = {};
|
|
|
|
VectorFileWriter *out = VectorFileWriter::ForFile(filename);
|
|
if(!out) return;
|
|
|
|
SS.exportMode = true;
|
|
GenerateAll(Generate::ALL);
|
|
|
|
SMesh *sm = NULL;
|
|
if(SS.GW.showShaded || SS.GW.drawOccludedAs != GraphicsWindow::DrawOccludedAs::VISIBLE) {
|
|
Group *g = SK.GetGroup(SS.GW.activeGroup);
|
|
g->GenerateDisplayItems();
|
|
sm = &(g->displayMesh);
|
|
}
|
|
if(sm && sm->IsEmpty()) {
|
|
sm = NULL;
|
|
}
|
|
|
|
for(auto &entity : SK.entity) {
|
|
Entity *e = &entity;
|
|
if(!e->IsVisible()) continue;
|
|
|
|
if(SS.exportPwlCurves || sm || fabs(SS.exportOffset) > LENGTH_EPS)
|
|
{
|
|
// We will be doing hidden line removal, which we can't do on
|
|
// exact curves; so we need things broken down to pwls. Same
|
|
// problem with cutter radius compensation.
|
|
e->GenerateEdges(&edges);
|
|
} else {
|
|
e->GenerateBezierCurves(&beziers);
|
|
}
|
|
}
|
|
|
|
if(SS.GW.showEdges || SS.GW.showOutlines) {
|
|
Group *g = SK.GetGroup(SS.GW.activeGroup);
|
|
g->GenerateDisplayItems();
|
|
if(SS.GW.showEdges) {
|
|
g->displayOutlines.ListTaggedInto(&edges, Style::SOLID_EDGE);
|
|
}
|
|
}
|
|
|
|
if(SS.GW.showConstraints != GraphicsWindow::ShowConstraintMode::SCM_NOSHOW ) {
|
|
if(!out->OutputConstraints(&SK.constraint)) {
|
|
GetEdgesCanvas canvas = {};
|
|
canvas.camera = SS.GW.GetCamera();
|
|
canvas.edges = &edges;
|
|
|
|
// The output format cannot represent constraints directly,
|
|
// so convert them to edges.
|
|
for(Constraint &c : SK.constraint) {
|
|
c.Draw(Constraint::DrawAs::DEFAULT, &canvas);
|
|
}
|
|
|
|
canvas.Clear();
|
|
}
|
|
}
|
|
|
|
if(exportWireframe) {
|
|
Vector u = Vector::From(1.0, 0.0, 0.0),
|
|
v = Vector::From(0.0, 1.0, 0.0),
|
|
n = Vector::From(0.0, 0.0, 1.0),
|
|
origin = Vector::From(0.0, 0.0, 0.0);
|
|
double cameraTan = 0.0,
|
|
scale = 1.0;
|
|
|
|
out->SetModelviewProjection(u, v, n, origin, cameraTan, scale);
|
|
|
|
ExportWireframeCurves(&edges, &beziers, out);
|
|
} else {
|
|
Vector u = SS.GW.projRight,
|
|
v = SS.GW.projUp,
|
|
n = u.Cross(v),
|
|
origin = SS.GW.offset.ScaledBy(-1);
|
|
|
|
out->SetModelviewProjection(u, v, n, origin,
|
|
SS.CameraTangent()*SS.GW.scale, SS.exportScale);
|
|
|
|
ExportLinesAndMesh(&edges, &beziers, sm,
|
|
u, v, n, origin, SS.CameraTangent()*SS.GW.scale,
|
|
out);
|
|
|
|
if(!out->HasCanvasSize()) {
|
|
// These file formats don't have a canvas size, so they just
|
|
// get exported in the raw coordinate system. So indicate what
|
|
// that was on-screen.
|
|
SS.justExportedInfo.showOrigin = true;
|
|
SS.justExportedInfo.pt = origin;
|
|
SS.justExportedInfo.u = u;
|
|
SS.justExportedInfo.v = v;
|
|
} else {
|
|
SS.justExportedInfo.showOrigin = false;
|
|
}
|
|
|
|
SS.justExportedInfo.draw = true;
|
|
GW.Invalidate();
|
|
}
|
|
|
|
edges.Clear();
|
|
beziers.Clear();
|
|
}
|
|
|
|
void SolveSpaceUI::ExportWireframeCurves(SEdgeList *sel, SBezierList *sbl,
|
|
VectorFileWriter *out)
|
|
{
|
|
SBezierLoopSetSet sblss = {};
|
|
SEdge *se;
|
|
for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
|
|
SBezier sb = SBezier::From(
|
|
(se->a).ScaledBy(1.0 / SS.exportScale),
|
|
(se->b).ScaledBy(1.0 / SS.exportScale));
|
|
sblss.AddOpenPath(&sb);
|
|
}
|
|
|
|
sbl->ScaleSelfBy(1.0/SS.exportScale);
|
|
SBezier *sb;
|
|
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
|
|
sblss.AddOpenPath(sb);
|
|
}
|
|
|
|
out->OutputLinesAndMesh(&sblss, NULL);
|
|
sblss.Clear();
|
|
}
|
|
|
|
void SolveSpaceUI::ExportLinesAndMesh(SEdgeList *sel, SBezierList *sbl, SMesh *sm,
|
|
Vector u, Vector v, Vector n,
|
|
Vector origin, double cameraTan,
|
|
VectorFileWriter *out)
|
|
{
|
|
double s = 1.0 / SS.exportScale;
|
|
|
|
// Project into the export plane; so when we're done, z doesn't matter,
|
|
// and x and y are what goes in the DXF.
|
|
for(SEdge *e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
|
|
// project into the specified csys, and apply export scale
|
|
(e->a) = e->a.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
|
|
(e->b) = e->b.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
|
|
}
|
|
|
|
if(sbl) {
|
|
for(SBezier *b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
|
|
*b = b->InPerspective(u, v, n, origin, cameraTan);
|
|
int i;
|
|
for(i = 0; i <= b->deg; i++) {
|
|
b->ctrl[i] = (b->ctrl[i]).ScaledBy(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If cutter radius compensation is requested, then perform it now
|
|
if(fabs(SS.exportOffset) > LENGTH_EPS) {
|
|
// assemble those edges into a polygon, and clear the edge list
|
|
SPolygon sp = {};
|
|
sel->AssemblePolygon(&sp, NULL);
|
|
sel->Clear();
|
|
|
|
SPolygon compd = {};
|
|
sp.normal = Vector::From(0, 0, -1);
|
|
sp.FixContourDirections();
|
|
sp.OffsetInto(&compd, SS.exportOffset*s);
|
|
sp.Clear();
|
|
|
|
compd.MakeEdgesInto(sel);
|
|
compd.Clear();
|
|
}
|
|
|
|
// Now the triangle mesh; project, then build a BSP to perform
|
|
// occlusion testing and generated the shaded surfaces.
|
|
SMesh smp = {};
|
|
if(sm) {
|
|
Vector l0 = (SS.lightDir[0]).WithMagnitude(1),
|
|
l1 = (SS.lightDir[1]).WithMagnitude(1);
|
|
STriangle *tr;
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
STriangle tt = *tr;
|
|
tt.a = (tt.a).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
|
|
tt.b = (tt.b).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
|
|
tt.c = (tt.c).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
|
|
|
|
// And calculate lighting for the triangle
|
|
Vector n = tt.Normal().WithMagnitude(1);
|
|
double lighting = min(1.0, SS.ambientIntensity +
|
|
max(0.0, (SS.lightIntensity[0])*(n.Dot(l0))) +
|
|
max(0.0, (SS.lightIntensity[1])*(n.Dot(l1))));
|
|
double r = min(1.0, tt.meta.color.redF() * lighting),
|
|
g = min(1.0, tt.meta.color.greenF() * lighting),
|
|
b = min(1.0, tt.meta.color.blueF() * lighting);
|
|
tt.meta.color = RGBf(r, g, b);
|
|
smp.AddTriangle(&tt);
|
|
}
|
|
}
|
|
|
|
SMesh sms = {};
|
|
|
|
// We need the mesh for occlusion testing, but if we don't/can't export it,
|
|
// don't generate it.
|
|
if(SS.GW.showShaded && out->CanOutputMesh()) {
|
|
// Use the BSP routines to generate the split triangles in paint order.
|
|
SBsp3 *bsp = SBsp3::FromMesh(&smp);
|
|
if(bsp) bsp->GenerateInPaintOrder(&sms);
|
|
// And cull the back-facing triangles
|
|
STriangle *tr;
|
|
sms.l.ClearTags();
|
|
for(tr = sms.l.First(); tr; tr = sms.l.NextAfter(tr)) {
|
|
Vector n = tr->Normal();
|
|
if(n.z < 0) {
|
|
tr->tag = 1;
|
|
}
|
|
}
|
|
sms.l.RemoveTagged();
|
|
}
|
|
|
|
// And now we perform hidden line removal if requested
|
|
SEdgeList hlrd = {};
|
|
if(sm) {
|
|
SKdNode *root = SKdNode::From(&smp);
|
|
|
|
// Generate the edges where a curved surface turns from front-facing
|
|
// to back-facing.
|
|
if(SS.GW.showEdges || SS.GW.showOutlines) {
|
|
root->MakeCertainEdgesInto(sel, EdgeKind::TURNING,
|
|
/*coplanarIsInter=*/false, NULL, NULL,
|
|
GW.showOutlines ? Style::OUTLINE : Style::SOLID_EDGE);
|
|
}
|
|
|
|
root->ClearTags();
|
|
int cnt = 1234;
|
|
|
|
SEdge *se;
|
|
for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
|
|
if(se->auxA == Style::CONSTRAINT) {
|
|
// Constraints should not get hidden line removed; they're
|
|
// always on top.
|
|
hlrd.AddEdge(se->a, se->b, se->auxA);
|
|
continue;
|
|
}
|
|
|
|
SEdgeList edges = {};
|
|
// Split the original edge against the mesh
|
|
edges.AddEdge(se->a, se->b, se->auxA);
|
|
root->OcclusionTestLine(*se, &edges, cnt);
|
|
if(SS.GW.drawOccludedAs == GraphicsWindow::DrawOccludedAs::STIPPLED) {
|
|
for(SEdge &se : edges.l) {
|
|
if(se.tag == 1) {
|
|
se.auxA = Style::HIDDEN_EDGE;
|
|
}
|
|
}
|
|
} else if(SS.GW.drawOccludedAs == GraphicsWindow::DrawOccludedAs::INVISIBLE) {
|
|
edges.l.RemoveTagged();
|
|
}
|
|
|
|
// the occlusion test splits unnecessarily; so fix those
|
|
edges.MergeCollinearSegments(se->a, se->b);
|
|
cnt++;
|
|
// And add the results to our output
|
|
SEdge *sen;
|
|
for(sen = edges.l.First(); sen; sen = edges.l.NextAfter(sen)) {
|
|
hlrd.AddEdge(sen->a, sen->b, sen->auxA);
|
|
}
|
|
edges.Clear();
|
|
}
|
|
|
|
sel = &hlrd;
|
|
}
|
|
|
|
// Clean up: remove overlapping line segments and
|
|
// segments with zero-length projections.
|
|
sel->l.ClearTags();
|
|
for(int i = 0; i < sel->l.n; ++i) {
|
|
SEdge *sei = &sel->l[i];
|
|
hStyle hsi = { (uint32_t)sei->auxA };
|
|
Style *si = Style::Get(hsi);
|
|
if(sei->tag != 0) continue;
|
|
|
|
// Remove segments with zero length projections.
|
|
Vector ai = sei->a;
|
|
ai.z = 0.0;
|
|
Vector bi = sei->b;
|
|
bi.z = 0.0;
|
|
Vector di = bi.Minus(ai);
|
|
if(fabs(di.x) < LENGTH_EPS && fabs(di.y) < LENGTH_EPS) {
|
|
sei->tag = 1;
|
|
continue;
|
|
}
|
|
|
|
for(int j = i + 1; j < sel->l.n; ++j) {
|
|
SEdge *sej = &sel->l[j];
|
|
if(sej->tag != 0) continue;
|
|
|
|
Vector *pAj = &sej->a;
|
|
Vector *pBj = &sej->b;
|
|
|
|
// Remove segments with zero length projections.
|
|
Vector aj = sej->a;
|
|
aj.z = 0.0;
|
|
Vector bj = sej->b;
|
|
bj.z = 0.0;
|
|
Vector dj = bj.Minus(aj);
|
|
if(fabs(dj.x) < LENGTH_EPS && fabs(dj.y) < LENGTH_EPS) {
|
|
sej->tag = 1;
|
|
continue;
|
|
}
|
|
|
|
// Skip non-collinear segments.
|
|
const double eps = 1e-6;
|
|
if(aj.DistanceToLine(ai, di) > eps) continue;
|
|
if(bj.DistanceToLine(ai, di) > eps) continue;
|
|
|
|
double ta = aj.Minus(ai).Dot(di) / di.Dot(di);
|
|
double tb = bj.Minus(ai).Dot(di) / di.Dot(di);
|
|
if(ta > tb) {
|
|
std::swap(pAj, pBj);
|
|
std::swap(ta, tb);
|
|
}
|
|
|
|
hStyle hsj = { (uint32_t)sej->auxA };
|
|
Style *sj = Style::Get(hsj);
|
|
|
|
bool canRemoveI = sej->auxA == sei->auxA || si->zIndex < sj->zIndex;
|
|
bool canRemoveJ = sej->auxA == sei->auxA || sj->zIndex < si->zIndex;
|
|
|
|
if(canRemoveJ) {
|
|
// j-segment inside i-segment
|
|
if(ta > 0.0 - eps && tb < 1.0 + eps) {
|
|
sej->tag = 1;
|
|
continue;
|
|
}
|
|
|
|
// cut segment
|
|
bool aInside = ta > 0.0 - eps && ta < 1.0 + eps;
|
|
if(tb > 1.0 - eps && aInside) {
|
|
*pAj = sei->b;
|
|
continue;
|
|
}
|
|
|
|
// cut segment
|
|
bool bInside = tb > 0.0 - eps && tb < 1.0 + eps;
|
|
if(ta < 0.0 - eps && bInside) {
|
|
*pBj = sei->a;
|
|
continue;
|
|
}
|
|
|
|
// split segment
|
|
if(ta < 0.0 - eps && tb > 1.0 + eps) {
|
|
sel->AddEdge(sei->b, *pBj, sej->auxA, sej->auxB);
|
|
*pBj = sei->a;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if(canRemoveI) {
|
|
// j-segment inside i-segment
|
|
if(ta < 0.0 + eps && tb > 1.0 - eps) {
|
|
sei->tag = 1;
|
|
break;
|
|
}
|
|
|
|
// cut segment
|
|
bool aInside = ta > 0.0 + eps && ta < 1.0 - eps;
|
|
if(tb > 1.0 - eps && aInside) {
|
|
sei->b = *pAj;
|
|
i--;
|
|
break;
|
|
}
|
|
|
|
// cut segment
|
|
bool bInside = tb > 0.0 + eps && tb < 1.0 - eps;
|
|
if(ta < 0.0 + eps && bInside) {
|
|
sei->a = *pBj;
|
|
i--;
|
|
break;
|
|
}
|
|
|
|
// split segment
|
|
if(ta > 0.0 + eps && tb < 1.0 - eps) {
|
|
sel->AddEdge(*pBj, sei->b, sei->auxA, sei->auxB);
|
|
sei->b = *pAj;
|
|
i--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sel->l.RemoveTagged();
|
|
|
|
// We kept the line segments and Beziers separate until now; but put them
|
|
// all together, and also project everything into the xy plane, since not
|
|
// all export targets ignore the z component of the points.
|
|
ssassert(sbl != nullptr, "Adding line segments to beziers assumes bezier list is non-null.");
|
|
for(SEdge *e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
|
|
SBezier sb = SBezier::From(e->a, e->b);
|
|
sb.auxA = e->auxA;
|
|
sbl->l.Add(&sb);
|
|
}
|
|
for(SBezier *b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
|
|
for(int i = 0; i <= b->deg; i++) {
|
|
b->ctrl[i].z = 0;
|
|
}
|
|
}
|
|
|
|
// If possible, then we will assemble these output curves into loops. They
|
|
// will then get exported as closed paths.
|
|
SBezierLoopSetSet sblss = {};
|
|
SBezierLoopSet leftovers = {};
|
|
SSurface srf = SSurface::FromPlane(Vector::From(0, 0, 0),
|
|
Vector::From(1, 0, 0),
|
|
Vector::From(0, 1, 0));
|
|
SPolygon spxyz = {};
|
|
bool allClosed;
|
|
SEdge notClosedAt;
|
|
sbl->l.ClearTags();
|
|
sblss.FindOuterFacesFrom(sbl, &spxyz, &srf,
|
|
SS.ExportChordTolMm(),
|
|
&allClosed, ¬ClosedAt,
|
|
NULL, NULL,
|
|
&leftovers);
|
|
sblss.l.Add(&leftovers);
|
|
|
|
// Now write the lines and triangles to the output file
|
|
out->OutputLinesAndMesh(&sblss, &sms);
|
|
|
|
spxyz.Clear();
|
|
sblss.Clear();
|
|
smp.Clear();
|
|
sms.Clear();
|
|
hlrd.Clear();
|
|
}
|
|
|
|
double VectorFileWriter::MmToPts(double mm) {
|
|
// 72 points in an inch
|
|
return (mm/25.4)*72;
|
|
}
|
|
|
|
VectorFileWriter *VectorFileWriter::ForFile(const Platform::Path &filename) {
|
|
VectorFileWriter *ret;
|
|
bool needOpen = true;
|
|
if(filename.HasExtension("dxf")) {
|
|
static DxfFileWriter DxfWriter;
|
|
ret = &DxfWriter;
|
|
needOpen = false;
|
|
} else if(filename.HasExtension("ps") || filename.HasExtension("eps")) {
|
|
static EpsFileWriter EpsWriter;
|
|
ret = &EpsWriter;
|
|
} else if(filename.HasExtension("pdf")) {
|
|
static PdfFileWriter PdfWriter;
|
|
ret = &PdfWriter;
|
|
} else if(filename.HasExtension("svg")) {
|
|
static SvgFileWriter SvgWriter;
|
|
ret = &SvgWriter;
|
|
} else if(filename.HasExtension("plt") || filename.HasExtension("hpgl")) {
|
|
static HpglFileWriter HpglWriter;
|
|
ret = &HpglWriter;
|
|
} else if(filename.HasExtension("step") || filename.HasExtension("stp")) {
|
|
static Step2dFileWriter Step2dWriter;
|
|
ret = &Step2dWriter;
|
|
} else if(filename.HasExtension("txt") || filename.HasExtension("ngc")) {
|
|
static GCodeFileWriter GCodeWriter;
|
|
ret = &GCodeWriter;
|
|
} else {
|
|
Error("Can't identify output file type from file extension of "
|
|
"filename '%s'; try "
|
|
".step, .stp, .dxf, .svg, .plt, .hpgl, .pdf, .txt, .ngc, "
|
|
".eps, or .ps.",
|
|
filename.raw.c_str());
|
|
return NULL;
|
|
}
|
|
ret->filename = filename;
|
|
if(!needOpen) return ret;
|
|
|
|
FILE *f = OpenFile(filename, "wb");
|
|
if(!f) {
|
|
Error("Couldn't write to '%s'", filename.raw.c_str());
|
|
return NULL;
|
|
}
|
|
ret->f = f;
|
|
return ret;
|
|
}
|
|
|
|
void VectorFileWriter::SetModelviewProjection(const Vector &u, const Vector &v, const Vector &n,
|
|
const Vector &origin, double cameraTan,
|
|
double scale) {
|
|
this->u = u;
|
|
this->v = v;
|
|
this->n = n;
|
|
this->origin = origin;
|
|
this->cameraTan = cameraTan;
|
|
this->scale = scale;
|
|
}
|
|
|
|
Vector VectorFileWriter::Transform(Vector &pos) const {
|
|
return pos.InPerspective(u, v, n, origin, cameraTan).ScaledBy(1.0 / scale);
|
|
}
|
|
|
|
void VectorFileWriter::OutputLinesAndMesh(SBezierLoopSetSet *sblss, SMesh *sm) {
|
|
STriangle *tr;
|
|
SBezier *b;
|
|
|
|
// First calculate the bounding box.
|
|
ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
|
|
ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
|
|
if(sm) {
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
(tr->a).MakeMaxMin(&ptMax, &ptMin);
|
|
(tr->b).MakeMaxMin(&ptMax, &ptMin);
|
|
(tr->c).MakeMaxMin(&ptMax, &ptMin);
|
|
}
|
|
}
|
|
if(sblss) {
|
|
SBezierLoopSet *sbls;
|
|
for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) {
|
|
SBezierLoop *sbl;
|
|
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
|
|
for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
|
|
for(int i = 0; i <= b->deg; i++) {
|
|
(b->ctrl[i]).MakeMaxMin(&ptMax, &ptMin);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// And now we compute the canvas size.
|
|
double s = 1.0 / SS.exportScale;
|
|
if(SS.exportCanvasSizeAuto) {
|
|
// It's based on the calculated bounding box; we grow it along each
|
|
// boundary by the specified amount.
|
|
ptMin.x -= s*SS.exportMargin.left;
|
|
ptMax.x += s*SS.exportMargin.right;
|
|
ptMin.y -= s*SS.exportMargin.bottom;
|
|
ptMax.y += s*SS.exportMargin.top;
|
|
} else {
|
|
ptMin.x = (s*SS.exportCanvas.dx);
|
|
ptMin.y = (s*SS.exportCanvas.dy);
|
|
ptMax.x = ptMin.x + (s*SS.exportCanvas.width);
|
|
ptMax.y = ptMin.y + (s*SS.exportCanvas.height);
|
|
}
|
|
|
|
StartFile();
|
|
if(SS.exportBackgroundColor) {
|
|
Background(SS.backgroundColor);
|
|
}
|
|
if(sm && SS.exportShadedTriangles) {
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
Triangle(tr);
|
|
}
|
|
}
|
|
if(sblss) {
|
|
SBezierLoopSet *sbls;
|
|
for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) {
|
|
for(SBezierLoop *sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
|
|
b = sbl->l.First();
|
|
if(!b || !Style::Exportable(b->auxA)) continue;
|
|
|
|
hStyle hs = { (uint32_t)b->auxA };
|
|
Style *stl = Style::Get(hs);
|
|
double lineWidth = Style::WidthMm(b->auxA)*s;
|
|
RgbaColor strokeRgb = Style::Color(hs, /*forExport=*/true);
|
|
RgbaColor fillRgb = Style::FillColor(hs, /*forExport=*/true);
|
|
|
|
StartPath(strokeRgb, lineWidth, stl->filled, fillRgb, hs);
|
|
for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
|
|
Bezier(b);
|
|
}
|
|
FinishPath(strokeRgb, lineWidth, stl->filled, fillRgb, hs);
|
|
}
|
|
}
|
|
}
|
|
FinishAndCloseFile();
|
|
}
|
|
|
|
void VectorFileWriter::BezierAsPwl(SBezier *sb) {
|
|
List<Vector> lv = {};
|
|
sb->MakePwlInto(&lv, SS.ExportChordTolMm());
|
|
|
|
for(int i = 1; i < lv.n; i++) {
|
|
SBezier sb = SBezier::From(lv[i-1], lv[i]);
|
|
Bezier(&sb);
|
|
}
|
|
lv.Clear();
|
|
}
|
|
|
|
void VectorFileWriter::BezierAsNonrationalCubic(SBezier *sb, int depth) {
|
|
Vector t0 = sb->TangentAt(0), t1 = sb->TangentAt(1);
|
|
// The curve is correct, and the first derivatives are correct, at the
|
|
// endpoints.
|
|
SBezier bnr = SBezier::From(
|
|
sb->Start(),
|
|
sb->Start().Plus(t0.ScaledBy(1.0/3)),
|
|
sb->Finish().Minus(t1.ScaledBy(1.0/3)),
|
|
sb->Finish());
|
|
|
|
double tol = SS.ExportChordTolMm();
|
|
// Arbitrary choice, but make it a little finer than pwl tolerance since
|
|
// it should be easier to achieve that with the smooth curves.
|
|
tol /= 2;
|
|
|
|
bool closeEnough = true;
|
|
int i;
|
|
for(i = 1; i <= 3; i++) {
|
|
double t = i/4.0;
|
|
Vector p0 = sb->PointAt(t),
|
|
pn = bnr.PointAt(t);
|
|
double d = (p0.Minus(pn)).Magnitude();
|
|
if(d > tol) {
|
|
closeEnough = false;
|
|
}
|
|
}
|
|
|
|
if(closeEnough || depth > 3) {
|
|
Bezier(&bnr);
|
|
} else {
|
|
SBezier bef, aft;
|
|
sb->SplitAt(0.5, &bef, &aft);
|
|
BezierAsNonrationalCubic(&bef, depth+1);
|
|
BezierAsNonrationalCubic(&aft, depth+1);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export a triangle mesh, in the requested format.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportMeshTo(const Platform::Path &filename) {
|
|
SS.exportMode = true;
|
|
GenerateAll(Generate::ALL);
|
|
|
|
Group *g = SK.GetGroup(SS.GW.activeGroup);
|
|
g->GenerateDisplayItems();
|
|
|
|
SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
|
|
if(m->IsEmpty()) {
|
|
Error(_("Active group mesh is empty; nothing to export."));
|
|
return;
|
|
}
|
|
|
|
FILE *f = OpenFile(filename, "wb");
|
|
if(!f) {
|
|
Error("Couldn't write to '%s'", filename.raw.c_str());
|
|
return;
|
|
}
|
|
ShowNakedEdges(/*reportOnlyWhenNotOkay=*/true);
|
|
if(filename.HasExtension("stl")) {
|
|
ExportMeshAsStlTo(f, m);
|
|
} else if(filename.HasExtension("obj")) {
|
|
Platform::Path mtlFilename = filename.WithExtension("mtl");
|
|
FILE *fMtl = OpenFile(mtlFilename, "wb");
|
|
if(!fMtl) {
|
|
Error("Couldn't write to '%s'", filename.raw.c_str());
|
|
return;
|
|
}
|
|
|
|
fprintf(f, "mtllib %s\n", mtlFilename.FileName().c_str());
|
|
ExportMeshAsObjTo(f, fMtl, m);
|
|
|
|
fclose(fMtl);
|
|
} else if(filename.HasExtension("js") ||
|
|
filename.HasExtension("html")) {
|
|
SOutlineList *e = &(SK.GetGroup(SS.GW.activeGroup)->displayOutlines);
|
|
ExportMeshAsThreeJsTo(f, filename, m, e);
|
|
} else if(filename.HasExtension("wrl")) {
|
|
ExportMeshAsVrmlTo(f, filename, m);
|
|
} else {
|
|
Error("Can't identify output file type from file extension of "
|
|
"filename '%s'; try .stl, .obj, .js, .html.", filename.raw.c_str());
|
|
}
|
|
|
|
fclose(f);
|
|
|
|
SS.justExportedInfo.showOrigin = false;
|
|
SS.justExportedInfo.draw = true;
|
|
GW.Invalidate();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export the mesh as an STL file; it should always be vertex-to-vertex and
|
|
// not self-intersecting, so not much to do.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportMeshAsStlTo(FILE *f, SMesh *sm) {
|
|
char str[80] = {};
|
|
strcpy(str, "STL exported mesh");
|
|
fwrite(str, 1, 80, f);
|
|
|
|
uint32_t n = sm->l.n;
|
|
fwrite(&n, 4, 1, f);
|
|
|
|
double s = SS.exportScale;
|
|
int i;
|
|
for(i = 0; i < sm->l.n; i++) {
|
|
STriangle *tr = &(sm->l[i]);
|
|
Vector n = tr->Normal().WithMagnitude(1);
|
|
float w;
|
|
w = (float)n.x; fwrite(&w, 4, 1, f);
|
|
w = (float)n.y; fwrite(&w, 4, 1, f);
|
|
w = (float)n.z; fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->a.x)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->a.y)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->a.z)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->b.x)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->b.y)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->b.z)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->c.x)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->c.y)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->c.z)/s); fwrite(&w, 4, 1, f);
|
|
fputc(0, f);
|
|
fputc(0, f);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export the mesh as Wavefront OBJ format. This requires us to reduce all the
|
|
// identical vertices to the same identifier, so do that first.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportMeshAsObjTo(FILE *fObj, FILE *fMtl, SMesh *sm) {
|
|
std::map<RgbaColor, std::string, RgbaColorCompare> colors;
|
|
for(const STriangle &t : sm->l) {
|
|
RgbaColor color = t.meta.color;
|
|
if(colors.find(color) == colors.end()) {
|
|
std::string id = ssprintf("h%02x%02x%02x",
|
|
color.red,
|
|
color.green,
|
|
color.blue);
|
|
colors.emplace(color, id);
|
|
}
|
|
for(int i = 0; i < 3; i++) {
|
|
fprintf(fObj, "v %.10f %.10f %.10f\n",
|
|
CO(t.vertices[i].ScaledBy(1 / SS.exportScale)));
|
|
}
|
|
}
|
|
|
|
for(auto &it : colors) {
|
|
fprintf(fMtl, "newmtl %s\n",
|
|
it.second.c_str());
|
|
fprintf(fMtl, "Kd %.3f %.3f %.3f\n",
|
|
it.first.redF(), it.first.greenF(), it.first.blueF());
|
|
}
|
|
|
|
for(const STriangle &t : sm->l) {
|
|
for(int i = 0; i < 3; i++) {
|
|
Vector n = t.normals[i].WithMagnitude(1.0);
|
|
fprintf(fObj, "vn %.10f %.10f %.10f\n",
|
|
CO(n));
|
|
}
|
|
}
|
|
|
|
RgbaColor currentColor = {};
|
|
for(int i = 0; i < sm->l.n; i++) {
|
|
const STriangle &t = sm->l[i];
|
|
if(!currentColor.Equals(t.meta.color)) {
|
|
currentColor = t.meta.color;
|
|
fprintf(fObj, "usemtl %s\n", colors[currentColor].c_str());
|
|
}
|
|
|
|
fprintf(fObj, "f %d//%d %d//%d %d//%d\n",
|
|
i * 3 + 1, i * 3 + 1,
|
|
i * 3 + 2, i * 3 + 2,
|
|
i * 3 + 3, i * 3 + 3);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export the mesh as a JavaScript script, which is compatible with Three.js.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportMeshAsThreeJsTo(FILE *f, const Platform::Path &filename,
|
|
SMesh *sm, SOutlineList *sol)
|
|
{
|
|
SPointList spl = {};
|
|
STriangle *tr;
|
|
Vector bndl, bndh;
|
|
|
|
const std::string THREE_FN("three-r111.min.js");
|
|
const std::string HAMMER_FN("hammer-2.0.8.js");
|
|
const std::string CONTROLS_FN("SolveSpaceControls.js");
|
|
|
|
const char htmlbegin[] = R"(
|
|
<!DOCTYPE html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8"></meta>
|
|
<title>Three.js Solvespace Mesh</title>
|
|
<script id="%s">%s</script>
|
|
<script id="%s">%s</script>
|
|
<script id="%s">%s</script>
|
|
<style type="text/css">
|
|
body { margin: 0; overflow: hidden; }
|
|
</style>
|
|
</head>
|
|
<body>
|
|
<script>
|
|
)";
|
|
const char htmlend[] = R"(
|
|
document.body.appendChild(solvespace(solvespace_model_%s, {
|
|
scale: %g,
|
|
offset: new THREE.Vector3(%g, %g, %g),
|
|
projUp: new THREE.Vector3(%g, %g, %g),
|
|
projRight: new THREE.Vector3(%g, %g, %g)
|
|
}));
|
|
</script>
|
|
</body>
|
|
</html>
|
|
)";
|
|
|
|
// A default three.js viewer with OrthographicTrackballControls is
|
|
// generated as a comment preceding the data.
|
|
|
|
// x bounds should be the range of x or y, whichever
|
|
// is larger, before aspect ratio correction is applied.
|
|
// y bounds should be the range of x or y, whichever is
|
|
// larger. No aspect ratio correction is applied.
|
|
// Near plane should be 1.
|
|
// Camera's z-position should be the range of z + 1 or the larger of
|
|
// the x or y bounds, whichever is larger.
|
|
// Far plane should be at least twice as much as the camera's
|
|
// z-position.
|
|
// Edge projection bias should be about 1/500 of the far plane's distance.
|
|
// Further corrections will be applied to the z-position and far plane in
|
|
// the default viewer, but the defaults are fine for a model which
|
|
// only rotates about the world origin.
|
|
|
|
sm->GetBounding(&bndh, &bndl);
|
|
double largerBoundXY = max((bndh.x - bndl.x), (bndh.y - bndl.y));
|
|
double largerBoundZ = max(largerBoundXY, (bndh.z - bndl.z + 1));
|
|
|
|
std::string basename = filename.FileStem();
|
|
for(size_t i = 0; i < basename.length(); i++) {
|
|
if(!(isalnum(basename[i]) || ((unsigned)basename[i] >= 0x80))) {
|
|
basename[i] = '_';
|
|
}
|
|
}
|
|
|
|
if(filename.HasExtension("html")) {
|
|
fprintf(f, htmlbegin,
|
|
THREE_FN.c_str(),
|
|
LoadStringFromGzip("threejs/" + THREE_FN + ".gz").c_str(),
|
|
HAMMER_FN.c_str(),
|
|
LoadStringFromGzip("threejs/" + HAMMER_FN + ".gz").c_str(),
|
|
CONTROLS_FN.c_str(),
|
|
LoadString("threejs/" + CONTROLS_FN).c_str());
|
|
}
|
|
|
|
fprintf(f, "var solvespace_model_%s = {\n"
|
|
" bounds: {\n"
|
|
" x: %f, y: %f, near: %f, far: %f, z: %f, edgeBias: %f\n"
|
|
" },\n",
|
|
basename.c_str(),
|
|
largerBoundXY,
|
|
largerBoundXY,
|
|
1.0,
|
|
largerBoundZ * 2,
|
|
largerBoundZ,
|
|
largerBoundZ / 250);
|
|
|
|
// Output lighting information.
|
|
fputs(" lights: {\n"
|
|
" d: [\n", f);
|
|
|
|
// Directional.
|
|
int lightCount;
|
|
for(lightCount = 0; lightCount < 2; lightCount++) {
|
|
fprintf(f, " {\n"
|
|
" intensity: %f, direction: [%f, %f, %f]\n"
|
|
" },\n",
|
|
SS.lightIntensity[lightCount],
|
|
CO(SS.lightDir[lightCount]));
|
|
}
|
|
|
|
// Global Ambience.
|
|
fprintf(f, " ],\n"
|
|
" a: %f\n", SS.ambientIntensity);
|
|
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
spl.IncrementTagFor(tr->a);
|
|
spl.IncrementTagFor(tr->b);
|
|
spl.IncrementTagFor(tr->c);
|
|
}
|
|
|
|
// Output all the vertices.
|
|
SPoint *sp;
|
|
fputs(" },\n"
|
|
" points: [\n", f);
|
|
for(sp = spl.l.First(); sp; sp = spl.l.NextAfter(sp)) {
|
|
fprintf(f, " [%f, %f, %f],\n",
|
|
sp->p.x / SS.exportScale,
|
|
sp->p.y / SS.exportScale,
|
|
sp->p.z / SS.exportScale);
|
|
}
|
|
|
|
fputs(" ],\n"
|
|
" faces: [\n", f);
|
|
// And now all the triangular faces, in terms of those vertices.
|
|
// This time we count from zero.
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
fprintf(f, " [%d, %d, %d],\n",
|
|
spl.IndexForPoint(tr->a),
|
|
spl.IndexForPoint(tr->b),
|
|
spl.IndexForPoint(tr->c));
|
|
}
|
|
|
|
// Output face normals.
|
|
fputs(" ],\n"
|
|
" normals: [\n", f);
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
fprintf(f, " [[%f, %f, %f], [%f, %f, %f], [%f, %f, %f]],\n",
|
|
CO(tr->an), CO(tr->bn), CO(tr->cn));
|
|
}
|
|
|
|
fputs(" ],\n"
|
|
" colors: [\n", f);
|
|
// Output triangle colors.
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
fprintf(f, " 0x%x,\n", tr->meta.color.ToARGB32());
|
|
}
|
|
|
|
fputs(" ],\n"
|
|
" edges: [\n", f);
|
|
// Output edges. Assume user's model colors do not obscure white edges.
|
|
for(const SOutline &so : sol->l) {
|
|
if(so.tag == 0) continue;
|
|
fprintf(f, " [[%f, %f, %f], [%f, %f, %f]],\n",
|
|
so.a.x / SS.exportScale,
|
|
so.a.y / SS.exportScale,
|
|
so.a.z / SS.exportScale,
|
|
so.b.x / SS.exportScale,
|
|
so.b.y / SS.exportScale,
|
|
so.b.z / SS.exportScale);
|
|
}
|
|
|
|
fputs(" ]\n};\n", f);
|
|
|
|
if(filename.HasExtension("html")) {
|
|
fprintf(f, htmlend,
|
|
basename.c_str(),
|
|
SS.GW.scale,
|
|
CO(SS.GW.offset),
|
|
CO(SS.GW.projUp),
|
|
CO(SS.GW.projRight));
|
|
}
|
|
|
|
spl.Clear();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export the mesh as a VRML text file / WRL.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportMeshAsVrmlTo(FILE *f, const Platform::Path &filename, SMesh *sm) {
|
|
struct STriangleSpan {
|
|
STriangle *first, *past_last;
|
|
|
|
STriangle *begin() const { return first; }
|
|
STriangle *end() const { return past_last; }
|
|
};
|
|
|
|
|
|
std::string basename = filename.FileStem();
|
|
for(auto & c : basename) {
|
|
if(!(isalnum(c) || ((unsigned)c >= 0x80))) {
|
|
c = '_';
|
|
}
|
|
}
|
|
|
|
fprintf(f, "#VRML V2.0 utf8\n"
|
|
"#Exported from SolveSpace %s\n"
|
|
"\n"
|
|
"DEF %s Transform {\n"
|
|
" children [",
|
|
PACKAGE_VERSION,
|
|
basename.c_str());
|
|
|
|
|
|
std::map<std::uint8_t, std::vector<STriangleSpan>> opacities;
|
|
STriangle *start = sm->l.begin();
|
|
std::uint8_t last_opacity = start->meta.color.alpha;
|
|
for(auto & tr : sm->l) {
|
|
if(tr.meta.color.alpha != last_opacity) {
|
|
opacities[last_opacity].push_back(STriangleSpan{start, &tr});
|
|
start = &tr;
|
|
last_opacity = start->meta.color.alpha;
|
|
}
|
|
}
|
|
opacities[last_opacity].push_back(STriangleSpan{start, sm->l.end()});
|
|
|
|
for(auto && op : opacities) {
|
|
fprintf(f, "\n"
|
|
" Shape {\n"
|
|
" appearance Appearance {\n"
|
|
" material DEF %s_material_%u Material {\n"
|
|
" diffuseColor %f %f %f\n"
|
|
" ambientIntensity %f\n"
|
|
" transparency %f\n"
|
|
" }\n"
|
|
" }\n"
|
|
" geometry IndexedFaceSet {\n"
|
|
" colorPerVertex TRUE\n"
|
|
" coord Coordinate { point [\n",
|
|
basename.c_str(),
|
|
(unsigned)op.first,
|
|
SS.ambientIntensity,
|
|
SS.ambientIntensity,
|
|
SS.ambientIntensity,
|
|
SS.ambientIntensity,
|
|
1.f - ((float)op.first / 255.0f));
|
|
|
|
SPointList spl = {};
|
|
|
|
for(const auto & sp : op.second) {
|
|
for(const auto & tr : sp) {
|
|
spl.IncrementTagFor(tr.a);
|
|
spl.IncrementTagFor(tr.b);
|
|
spl.IncrementTagFor(tr.c);
|
|
}
|
|
}
|
|
|
|
// Output all the vertices.
|
|
for(auto sp : spl.l) {
|
|
fprintf(f, " %f %f %f,\n",
|
|
sp.p.x / SS.exportScale,
|
|
sp.p.y / SS.exportScale,
|
|
sp.p.z / SS.exportScale);
|
|
}
|
|
|
|
fputs(" ] }\n"
|
|
" coordIndex [\n", f);
|
|
// And now all the triangular faces, in terms of those vertices.
|
|
for(const auto & sp : op.second) {
|
|
for(const auto & tr : sp) {
|
|
fprintf(f, " %d, %d, %d, -1,\n",
|
|
spl.IndexForPoint(tr.a),
|
|
spl.IndexForPoint(tr.b),
|
|
spl.IndexForPoint(tr.c));
|
|
}
|
|
}
|
|
|
|
fputs(" ]\n"
|
|
" color Color { color [\n", f);
|
|
// Output triangle colors.
|
|
std::vector<int> triangle_colour_ids;
|
|
std::vector<RgbaColor> colours_present;
|
|
for(const auto & sp : op.second) {
|
|
for(const auto & tr : sp) {
|
|
const auto colour_itr = std::find_if(colours_present.begin(), colours_present.end(),
|
|
[&](const RgbaColor & c) {
|
|
return c.Equals(tr.meta.color);
|
|
});
|
|
if(colour_itr == colours_present.end()) {
|
|
fprintf(f, " %.10f %.10f %.10f,\n",
|
|
tr.meta.color.redF(),
|
|
tr.meta.color.greenF(),
|
|
tr.meta.color.blueF());
|
|
triangle_colour_ids.push_back(colours_present.size());
|
|
colours_present.insert(colours_present.end(), tr.meta.color);
|
|
} else {
|
|
triangle_colour_ids.push_back(colour_itr - colours_present.begin());
|
|
}
|
|
}
|
|
}
|
|
|
|
fputs(" ] }\n"
|
|
" colorIndex [\n", f);
|
|
|
|
for(auto colour_idx : triangle_colour_ids) {
|
|
fprintf(f, " %d, %d, %d, -1,\n", colour_idx, colour_idx, colour_idx);
|
|
}
|
|
|
|
fputs(" ]\n"
|
|
" }\n"
|
|
" }\n", f);
|
|
|
|
spl.Clear();
|
|
}
|
|
|
|
fputs(" ]\n"
|
|
"}\n", f);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export a view of the model as an image; we just take a screenshot, by
|
|
// rendering the view in the usual way and then copying the pixels.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportAsPngTo(const Platform::Path &filename) {
|
|
screenshotFile = filename;
|
|
// The rest of the work is done in the next redraw.
|
|
GW.Invalidate();
|
|
}
|