141 lines
3.2 KiB
C++
141 lines
3.2 KiB
C++
|
|
#ifndef __SURFACE_H
|
|
#define __SURFACE_H
|
|
|
|
// Utility functions, Bernstein polynomials of order 1-3 and their derivatives.
|
|
double Bernstein(int k, int deg, double t);
|
|
double BernsteinDerivative(int k, int deg, double t);
|
|
|
|
class SShell;
|
|
|
|
class hSSurface {
|
|
public:
|
|
DWORD v;
|
|
};
|
|
|
|
class hSCurve {
|
|
public:
|
|
DWORD v;
|
|
};
|
|
|
|
// Stuff for rational polynomial curves, of degree one to three. These are
|
|
// our inputs.
|
|
class SBezier {
|
|
public:
|
|
int tag;
|
|
int deg;
|
|
Vector ctrl[4];
|
|
double weight[4];
|
|
|
|
Vector PointAt(double t);
|
|
Vector Start(void);
|
|
Vector Finish(void);
|
|
void MakePwlInto(List<Vector> *l);
|
|
void MakePwlInto(List<Vector> *l, Vector offset);
|
|
void MakePwlWorker(List<Vector> *l, double ta, double tb, Vector offset);
|
|
|
|
void Reverse(void);
|
|
|
|
static SBezier From(Vector p0, Vector p1, Vector p2, Vector p3);
|
|
static SBezier From(Vector p0, Vector p1, Vector p2);
|
|
static SBezier From(Vector p0, Vector p1);
|
|
};
|
|
|
|
class SBezierList {
|
|
public:
|
|
List<SBezier> l;
|
|
|
|
void Clear(void);
|
|
};
|
|
|
|
class SBezierLoop {
|
|
public:
|
|
List<SBezier> l;
|
|
|
|
inline void Clear(void) { l.Clear(); }
|
|
void Reverse(void);
|
|
void MakePwlInto(SContour *sc);
|
|
|
|
static SBezierLoop FromCurves(SBezierList *spcl,
|
|
bool *allClosed, SEdge *errorAt);
|
|
};
|
|
|
|
class SBezierLoopSet {
|
|
public:
|
|
List<SBezierLoop> l;
|
|
Vector normal;
|
|
Vector point;
|
|
|
|
static SBezierLoopSet From(SBezierList *spcl, SPolygon *poly,
|
|
bool *allClosed, SEdge *errorAt);
|
|
|
|
void Clear(void);
|
|
};
|
|
|
|
// Stuff for the surface trim curves: piecewise linear
|
|
class SCurve {
|
|
public:
|
|
hSCurve h;
|
|
|
|
bool isExact;
|
|
SBezier exact;
|
|
|
|
List<Vector> pts;
|
|
|
|
void Clear(void);
|
|
};
|
|
|
|
// A segment of a curve by which a surface is trimmed: indicates which curve,
|
|
// by its handle, and the starting and ending points of our segment of it.
|
|
// The vector out points out of the surface; it, the surface outer normal,
|
|
// and a tangent to the beginning of the curve are all orthogonal.
|
|
class STrimBy {
|
|
public:
|
|
hSCurve curve;
|
|
Vector start;
|
|
Vector finish;
|
|
Vector out;
|
|
|
|
static STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc);
|
|
};
|
|
|
|
// A rational polynomial surface in Bezier form.
|
|
class SSurface {
|
|
public:
|
|
hSSurface h;
|
|
|
|
int degm, degn;
|
|
Vector ctrl[4][4];
|
|
double weight[4][4];
|
|
|
|
List<STrimBy> trim;
|
|
|
|
static SSurface FromExtrusionOf(SBezier *spc, Vector t0, Vector t1);
|
|
static SSurface FromPlane(Vector pt, Vector n);
|
|
|
|
void ClosestPointTo(Vector p, double *u, double *v);
|
|
Vector PointAt(double u, double v);
|
|
void TangentsAt(double u, double v, Vector *tu, Vector *tv);
|
|
Vector NormalAt(double u, double v);
|
|
|
|
void TriangulateInto(SShell *shell, SMesh *sm);
|
|
|
|
void Clear(void);
|
|
};
|
|
|
|
class SShell {
|
|
public:
|
|
IdList<SCurve,hSCurve> curve;
|
|
IdList<SSurface,hSSurface> surface;
|
|
|
|
static SShell FromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1);
|
|
|
|
static SShell FromUnionOf(SShell *a, SShell *b);
|
|
|
|
void TriangulateInto(SMesh *sm);
|
|
void Clear(void);
|
|
};
|
|
|
|
#endif
|
|
|