1060 lines
41 KiB
C++
1060 lines
41 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Given a constraint, generate one or more equations in our symbolic algebra
|
|
// system to represent that constraint; also various geometric helper
|
|
// functions for that.
|
|
//
|
|
// Copyright 2008-2013 Jonathan Westhues.
|
|
//-----------------------------------------------------------------------------
|
|
#include "solvespace.h"
|
|
|
|
const hConstraint ConstraintBase::NO_CONSTRAINT = { 0 };
|
|
|
|
bool ConstraintBase::HasLabel() const {
|
|
switch(type) {
|
|
case Type::PT_LINE_DISTANCE:
|
|
case Type::PT_PLANE_DISTANCE:
|
|
case Type::PT_FACE_DISTANCE:
|
|
case Type::PT_PT_DISTANCE:
|
|
case Type::PROJ_PT_DISTANCE:
|
|
case Type::DIAMETER:
|
|
case Type::LENGTH_RATIO:
|
|
case Type::ARC_ARC_LEN_RATIO:
|
|
case Type::ARC_LINE_LEN_RATIO:
|
|
case Type::LENGTH_DIFFERENCE:
|
|
case Type::ARC_ARC_DIFFERENCE:
|
|
case Type::ARC_LINE_DIFFERENCE:
|
|
case Type::ANGLE:
|
|
case Type::COMMENT:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool ConstraintBase::IsProjectible() const {
|
|
switch(type) {
|
|
case Type::POINTS_COINCIDENT:
|
|
case Type::PT_PT_DISTANCE:
|
|
case Type::PT_LINE_DISTANCE:
|
|
case Type::PT_ON_LINE:
|
|
case Type::EQUAL_LENGTH_LINES:
|
|
case Type::EQ_LEN_PT_LINE_D:
|
|
case Type::EQ_PT_LN_DISTANCES:
|
|
case Type::EQUAL_ANGLE:
|
|
case Type::LENGTH_RATIO:
|
|
case Type::ARC_ARC_LEN_RATIO:
|
|
case Type::ARC_LINE_LEN_RATIO:
|
|
case Type::LENGTH_DIFFERENCE:
|
|
case Type::ARC_ARC_DIFFERENCE:
|
|
case Type::ARC_LINE_DIFFERENCE:
|
|
case Type::SYMMETRIC:
|
|
case Type::SYMMETRIC_HORIZ:
|
|
case Type::SYMMETRIC_VERT:
|
|
case Type::SYMMETRIC_LINE:
|
|
case Type::AT_MIDPOINT:
|
|
case Type::HORIZONTAL:
|
|
case Type::VERTICAL:
|
|
case Type::ANGLE:
|
|
case Type::PARALLEL:
|
|
case Type::PERPENDICULAR:
|
|
case Type::WHERE_DRAGGED:
|
|
case Type::COMMENT:
|
|
return true;
|
|
|
|
case Type::PT_PLANE_DISTANCE:
|
|
case Type::PT_FACE_DISTANCE:
|
|
case Type::PROJ_PT_DISTANCE:
|
|
case Type::PT_IN_PLANE:
|
|
case Type::PT_ON_FACE:
|
|
case Type::EQUAL_LINE_ARC_LEN:
|
|
case Type::DIAMETER:
|
|
case Type::PT_ON_CIRCLE:
|
|
case Type::SAME_ORIENTATION:
|
|
case Type::CUBIC_LINE_TANGENT:
|
|
case Type::CURVE_CURVE_TANGENT:
|
|
case Type::ARC_LINE_TANGENT:
|
|
case Type::EQUAL_RADIUS:
|
|
return false;
|
|
}
|
|
ssassert(false, "Impossible");
|
|
}
|
|
|
|
ExprVector ConstraintBase::VectorsParallel3d(ExprVector a, ExprVector b, hParam p) {
|
|
return a.Minus(b.ScaledBy(Expr::From(p)));
|
|
}
|
|
|
|
Expr *ConstraintBase::PointLineDistance(hEntity wrkpl, hEntity hpt, hEntity hln)
|
|
{
|
|
EntityBase *ln = SK.GetEntity(hln);
|
|
EntityBase *a = SK.GetEntity(ln->point[0]);
|
|
EntityBase *b = SK.GetEntity(ln->point[1]);
|
|
|
|
EntityBase *p = SK.GetEntity(hpt);
|
|
|
|
if(wrkpl == EntityBase::FREE_IN_3D) {
|
|
ExprVector ep = p->PointGetExprs();
|
|
|
|
ExprVector ea = a->PointGetExprs();
|
|
ExprVector eb = b->PointGetExprs();
|
|
ExprVector eab = ea.Minus(eb);
|
|
Expr *m = eab.Magnitude();
|
|
|
|
return ((eab.Cross(ea.Minus(ep))).Magnitude())->Div(m);
|
|
} else {
|
|
Expr *ua, *va, *ub, *vb;
|
|
a->PointGetExprsInWorkplane(wrkpl, &ua, &va);
|
|
b->PointGetExprsInWorkplane(wrkpl, &ub, &vb);
|
|
|
|
Expr *du = ua->Minus(ub);
|
|
Expr *dv = va->Minus(vb);
|
|
|
|
Expr *u, *v;
|
|
p->PointGetExprsInWorkplane(wrkpl, &u, &v);
|
|
|
|
Expr *m = ((du->Square())->Plus(dv->Square()))->Sqrt();
|
|
|
|
Expr *proj = (dv->Times(ua->Minus(u)))->Minus(
|
|
(du->Times(va->Minus(v))));
|
|
|
|
return proj->Div(m);
|
|
}
|
|
}
|
|
|
|
Expr *ConstraintBase::PointPlaneDistance(ExprVector p, hEntity hpl) {
|
|
ExprVector n;
|
|
Expr *d;
|
|
SK.GetEntity(hpl)->WorkplaneGetPlaneExprs(&n, &d);
|
|
return (p.Dot(n))->Minus(d);
|
|
}
|
|
|
|
Expr *ConstraintBase::Distance(hEntity wrkpl, hEntity hpa, hEntity hpb) {
|
|
EntityBase *pa = SK.GetEntity(hpa);
|
|
EntityBase *pb = SK.GetEntity(hpb);
|
|
ssassert(pa->IsPoint() && pb->IsPoint(),
|
|
"Expected two points to measure projected distance between");
|
|
|
|
if(wrkpl == EntityBase::FREE_IN_3D) {
|
|
// This is true distance
|
|
ExprVector ea, eb, eab;
|
|
ea = pa->PointGetExprs();
|
|
eb = pb->PointGetExprs();
|
|
eab = ea.Minus(eb);
|
|
|
|
return eab.Magnitude();
|
|
} else {
|
|
// This is projected distance, in the given workplane.
|
|
Expr *au, *av, *bu, *bv;
|
|
|
|
pa->PointGetExprsInWorkplane(wrkpl, &au, &av);
|
|
pb->PointGetExprsInWorkplane(wrkpl, &bu, &bv);
|
|
|
|
Expr *du = au->Minus(bu);
|
|
Expr *dv = av->Minus(bv);
|
|
|
|
return ((du->Square())->Plus(dv->Square()))->Sqrt();
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Return the cosine of the angle between two vectors. If a workplane is
|
|
// specified, then it's the cosine of their projections into that workplane.
|
|
//-----------------------------------------------------------------------------
|
|
Expr *ConstraintBase::DirectionCosine(hEntity wrkpl,
|
|
ExprVector ae, ExprVector be)
|
|
{
|
|
if(wrkpl == EntityBase::FREE_IN_3D) {
|
|
Expr *mags = (ae.Magnitude())->Times(be.Magnitude());
|
|
return (ae.Dot(be))->Div(mags);
|
|
} else {
|
|
EntityBase *w = SK.GetEntity(wrkpl);
|
|
ExprVector u = w->Normal()->NormalExprsU();
|
|
ExprVector v = w->Normal()->NormalExprsV();
|
|
Expr *ua = u.Dot(ae);
|
|
Expr *va = v.Dot(ae);
|
|
Expr *ub = u.Dot(be);
|
|
Expr *vb = v.Dot(be);
|
|
Expr *maga = (ua->Square()->Plus(va->Square()))->Sqrt();
|
|
Expr *magb = (ub->Square()->Plus(vb->Square()))->Sqrt();
|
|
Expr *dot = (ua->Times(ub))->Plus(va->Times(vb));
|
|
return dot->Div(maga->Times(magb));
|
|
}
|
|
}
|
|
|
|
ExprVector ConstraintBase::PointInThreeSpace(hEntity workplane,
|
|
Expr *u, Expr *v)
|
|
{
|
|
EntityBase *w = SK.GetEntity(workplane);
|
|
|
|
ExprVector ub = w->Normal()->NormalExprsU();
|
|
ExprVector vb = w->Normal()->NormalExprsV();
|
|
ExprVector ob = w->WorkplaneGetOffsetExprs();
|
|
|
|
return (ub.ScaledBy(u)).Plus(vb.ScaledBy(v)).Plus(ob);
|
|
}
|
|
|
|
void ConstraintBase::ModifyToSatisfy() {
|
|
if(type == Type::ANGLE) {
|
|
Vector a = SK.GetEntity(entityA)->VectorGetNum();
|
|
Vector b = SK.GetEntity(entityB)->VectorGetNum();
|
|
if(other) a = a.ScaledBy(-1);
|
|
if(workplane != EntityBase::FREE_IN_3D) {
|
|
a = a.ProjectVectorInto(workplane);
|
|
b = b.ProjectVectorInto(workplane);
|
|
}
|
|
double c = (a.Dot(b))/(a.Magnitude() * b.Magnitude());
|
|
valA = acos(c)*180/PI;
|
|
} else if(type == Type::PT_ON_LINE) {
|
|
EntityBase *eln = SK.GetEntity(entityA);
|
|
EntityBase *ea = SK.GetEntity(eln->point[0]);
|
|
EntityBase *eb = SK.GetEntity(eln->point[1]);
|
|
EntityBase *ep = SK.GetEntity(ptA);
|
|
ExprVector exp = ep->PointGetExprsInWorkplane(workplane);
|
|
ExprVector exa = ea->PointGetExprsInWorkplane(workplane);
|
|
ExprVector exb = eb->PointGetExprsInWorkplane(workplane);
|
|
ExprVector exba = exb.Minus(exa);
|
|
SK.GetParam(valP)->val = exba.Dot(exp.Minus(exa))->Eval() / exba.Dot(exba)->Eval();
|
|
} else {
|
|
// We'll fix these ones up by looking at their symbolic equation;
|
|
// that means no extra work.
|
|
IdList<Equation,hEquation> l = {};
|
|
// Generate the equations even if this is a reference dimension
|
|
GenerateEquations(&l, /*forReference=*/true);
|
|
ssassert(l.n == 1, "Expected constraint to generate a single equation");
|
|
|
|
// These equations are written in the form f(...) - d = 0, where
|
|
// d is the value of the valA.
|
|
valA += (l[0].e)->Eval();
|
|
|
|
l.Clear();
|
|
}
|
|
}
|
|
|
|
void ConstraintBase::AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index) const
|
|
{
|
|
Equation eq;
|
|
eq.e = expr;
|
|
eq.h = h.equation(index);
|
|
l->Add(&eq);
|
|
}
|
|
|
|
void ConstraintBase::AddEq(IdList<Equation,hEquation> *l, const ExprVector &v,
|
|
int baseIndex) const {
|
|
AddEq(l, v.x, baseIndex);
|
|
AddEq(l, v.y, baseIndex + 1);
|
|
if(workplane == EntityBase::FREE_IN_3D) {
|
|
AddEq(l, v.z, baseIndex + 2);
|
|
}
|
|
}
|
|
|
|
void ConstraintBase::Generate(IdList<Param,hParam> *l) {
|
|
switch(type) {
|
|
case Type::PARALLEL:
|
|
case Type::CUBIC_LINE_TANGENT:
|
|
// Add new parameter only when we operate in 3d space
|
|
if(workplane != EntityBase::FREE_IN_3D) break;
|
|
// fallthrough
|
|
case Type::SAME_ORIENTATION:
|
|
case Type::PT_ON_LINE: {
|
|
Param p = {};
|
|
valP = h.param(0);
|
|
p.h = valP;
|
|
l->Add(&p);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ConstraintBase::GenerateEquations(IdList<Equation,hEquation> *l,
|
|
bool forReference) const {
|
|
if(reference && !forReference) return;
|
|
|
|
Expr *exA = Expr::From(valA);
|
|
switch(type) {
|
|
case Type::PT_PT_DISTANCE:
|
|
AddEq(l, Distance(workplane, ptA, ptB)->Minus(exA), 0);
|
|
return;
|
|
|
|
case Type::PROJ_PT_DISTANCE: {
|
|
ExprVector pA = SK.GetEntity(ptA)->PointGetExprs(),
|
|
pB = SK.GetEntity(ptB)->PointGetExprs(),
|
|
dp = pB.Minus(pA);
|
|
|
|
ExprVector pp = SK.GetEntity(entityA)->VectorGetExprs();
|
|
pp = pp.WithMagnitude(Expr::From(1.0));
|
|
|
|
AddEq(l, (dp.Dot(pp))->Minus(exA), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::PT_LINE_DISTANCE:
|
|
AddEq(l,
|
|
PointLineDistance(workplane, ptA, entityA)->Minus(exA), 0);
|
|
return;
|
|
|
|
case Type::PT_PLANE_DISTANCE: {
|
|
ExprVector pt = SK.GetEntity(ptA)->PointGetExprs();
|
|
AddEq(l, (PointPlaneDistance(pt, entityA))->Minus(exA), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::PT_FACE_DISTANCE: {
|
|
ExprVector pt = SK.GetEntity(ptA)->PointGetExprs();
|
|
EntityBase *f = SK.GetEntity(entityA);
|
|
ExprVector p0 = f->FaceGetPointExprs();
|
|
ExprVector n = f->FaceGetNormalExprs();
|
|
AddEq(l, (pt.Minus(p0)).Dot(n)->Minus(exA), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::EQUAL_LENGTH_LINES: {
|
|
EntityBase *a = SK.GetEntity(entityA);
|
|
EntityBase *b = SK.GetEntity(entityB);
|
|
AddEq(l, Distance(workplane, a->point[0], a->point[1])->Minus(
|
|
Distance(workplane, b->point[0], b->point[1])), 0);
|
|
return;
|
|
}
|
|
|
|
// These work on distance squared, since the pt-line distances are
|
|
// signed, and we want the absolute value.
|
|
case Type::EQ_LEN_PT_LINE_D: {
|
|
EntityBase *forLen = SK.GetEntity(entityA);
|
|
Expr *d1 = Distance(workplane, forLen->point[0], forLen->point[1]);
|
|
Expr *d2 = PointLineDistance(workplane, ptA, entityB);
|
|
AddEq(l, (d1->Square())->Minus(d2->Square()), 0);
|
|
return;
|
|
}
|
|
case Type::EQ_PT_LN_DISTANCES: {
|
|
Expr *d1 = PointLineDistance(workplane, ptA, entityA);
|
|
Expr *d2 = PointLineDistance(workplane, ptB, entityB);
|
|
AddEq(l, (d1->Square())->Minus(d2->Square()), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::LENGTH_RATIO: {
|
|
EntityBase *a = SK.GetEntity(entityA);
|
|
EntityBase *b = SK.GetEntity(entityB);
|
|
Expr *la = Distance(workplane, a->point[0], a->point[1]);
|
|
Expr *lb = Distance(workplane, b->point[0], b->point[1]);
|
|
AddEq(l, (la->Div(lb))->Minus(exA), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::ARC_ARC_LEN_RATIO: {
|
|
EntityBase *arc1 = SK.GetEntity(entityA),
|
|
*arc2 = SK.GetEntity(entityB);
|
|
|
|
// And get the arc1 radius, and the cosine of its angle
|
|
EntityBase *ao1 = SK.GetEntity(arc1->point[0]),
|
|
*as1 = SK.GetEntity(arc1->point[1]),
|
|
*af1 = SK.GetEntity(arc1->point[2]);
|
|
|
|
ExprVector aos1 = (as1->PointGetExprs()).Minus(ao1->PointGetExprs()),
|
|
aof1 = (af1->PointGetExprs()).Minus(ao1->PointGetExprs());
|
|
Expr *r1 = aof1.Magnitude();
|
|
|
|
ExprVector n1 = arc1->Normal()->NormalExprsN();
|
|
ExprVector u1 = aos1.WithMagnitude(Expr::From(1.0));
|
|
ExprVector v1 = n1.Cross(u1);
|
|
// so in our new csys, we start at (1, 0, 0)
|
|
Expr *costheta1 = aof1.Dot(u1)->Div(r1);
|
|
Expr *sintheta1 = aof1.Dot(v1)->Div(r1);
|
|
|
|
double thetas1, thetaf1, dtheta1;
|
|
arc1->ArcGetAngles(&thetas1, &thetaf1, &dtheta1);
|
|
Expr *theta1;
|
|
if(dtheta1 < 3*PI/4) {
|
|
theta1 = costheta1->ACos();
|
|
} else if(dtheta1 < 5*PI/4) {
|
|
// As the angle crosses pi, cos theta1 is not invertible;
|
|
// so use the sine to stop blowing up
|
|
theta1 = Expr::From(PI)->Minus(sintheta1->ASin());
|
|
} else {
|
|
theta1 = (Expr::From(2*PI))->Minus(costheta1->ACos());
|
|
}
|
|
|
|
// And get the arc2 radius, and the cosine of its angle
|
|
EntityBase *ao2 = SK.GetEntity(arc2->point[0]),
|
|
*as2 = SK.GetEntity(arc2->point[1]),
|
|
*af2 = SK.GetEntity(arc2->point[2]);
|
|
|
|
ExprVector aos2 = (as2->PointGetExprs()).Minus(ao2->PointGetExprs()),
|
|
aof2 = (af2->PointGetExprs()).Minus(ao2->PointGetExprs());
|
|
Expr *r2 = aof2.Magnitude();
|
|
|
|
ExprVector n2 = arc2->Normal()->NormalExprsN();
|
|
ExprVector u2 = aos2.WithMagnitude(Expr::From(1.0));
|
|
ExprVector v2 = n2.Cross(u2);
|
|
// so in our new csys, we start at (1, 0, 0)
|
|
Expr *costheta2 = aof2.Dot(u2)->Div(r2);
|
|
Expr *sintheta2 = aof2.Dot(v2)->Div(r2);
|
|
|
|
double thetas2, thetaf2, dtheta2;
|
|
arc2->ArcGetAngles(&thetas2, &thetaf2, &dtheta2);
|
|
Expr *theta2;
|
|
if(dtheta2 < 3*PI/4) {
|
|
theta2 = costheta2->ACos();
|
|
} else if(dtheta2 < 5*PI/4) {
|
|
// As the angle crosses pi, cos theta2 is not invertible;
|
|
// so use the sine to stop blowing up
|
|
theta2 = Expr::From(PI)->Minus(sintheta2->ASin());
|
|
} else {
|
|
theta2 = (Expr::From(2*PI))->Minus(costheta2->ACos());
|
|
}
|
|
// And write the equation; (r1*theta1) / ( r2*theta2) = some ratio
|
|
AddEq(l, (r1->Times(theta1))->Div(r2->Times(theta2))->Minus(exA), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::ARC_LINE_LEN_RATIO: {
|
|
EntityBase *line = SK.GetEntity(entityA),
|
|
*arc1 = SK.GetEntity(entityB);
|
|
|
|
Expr *ll = Distance(workplane, line->point[0], line->point[1]);
|
|
|
|
// And get the arc1 radius, and the cosine of its angle
|
|
EntityBase *ao1 = SK.GetEntity(arc1->point[0]),
|
|
*as1 = SK.GetEntity(arc1->point[1]),
|
|
*af1 = SK.GetEntity(arc1->point[2]);
|
|
|
|
ExprVector aos1 = (as1->PointGetExprs()).Minus(ao1->PointGetExprs()),
|
|
aof1 = (af1->PointGetExprs()).Minus(ao1->PointGetExprs());
|
|
Expr *r1 = aof1.Magnitude();
|
|
ExprVector n1 = arc1->Normal()->NormalExprsN();
|
|
ExprVector u1 = aos1.WithMagnitude(Expr::From(1.0));
|
|
ExprVector v1 = n1.Cross(u1);
|
|
// so in our new csys, we start at (1, 0, 0)
|
|
Expr *costheta1 = aof1.Dot(u1)->Div(r1);
|
|
Expr *sintheta1 = aof1.Dot(v1)->Div(r1);
|
|
|
|
double thetas1, thetaf1, dtheta1;
|
|
arc1->ArcGetAngles(&thetas1, &thetaf1, &dtheta1);
|
|
Expr *theta1;
|
|
if(dtheta1 < 3*PI/4) {
|
|
theta1 = costheta1->ACos();
|
|
} else if(dtheta1 < 5*PI/4) {
|
|
// As the angle crosses pi, cos theta1 is not invertible;
|
|
// so use the sine to stop blowing up
|
|
theta1 = Expr::From(PI)->Minus(sintheta1->ASin());
|
|
} else {
|
|
theta1 = (Expr::From(2*PI))->Minus(costheta1->ACos());
|
|
}
|
|
// And write the equation; (r1*theta1) / ( length) = some ratio
|
|
AddEq(l, (r1->Times(theta1))->Div(ll)->Minus(exA), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::LENGTH_DIFFERENCE: {
|
|
EntityBase *a = SK.GetEntity(entityA);
|
|
EntityBase *b = SK.GetEntity(entityB);
|
|
Expr *la = Distance(workplane, a->point[0], a->point[1]);
|
|
Expr *lb = Distance(workplane, b->point[0], b->point[1]);
|
|
AddEq(l, (la->Minus(lb))->Minus(exA), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::ARC_ARC_DIFFERENCE: {
|
|
EntityBase *arc1 = SK.GetEntity(entityA),
|
|
*arc2 = SK.GetEntity(entityB);
|
|
|
|
// And get the arc1 radius, and the cosine of its angle
|
|
EntityBase *ao1 = SK.GetEntity(arc1->point[0]),
|
|
*as1 = SK.GetEntity(arc1->point[1]),
|
|
*af1 = SK.GetEntity(arc1->point[2]);
|
|
|
|
ExprVector aos1 = (as1->PointGetExprs()).Minus(ao1->PointGetExprs()),
|
|
aof1 = (af1->PointGetExprs()).Minus(ao1->PointGetExprs());
|
|
Expr *r1 = aof1.Magnitude();
|
|
|
|
ExprVector n1 = arc1->Normal()->NormalExprsN();
|
|
ExprVector u1 = aos1.WithMagnitude(Expr::From(1.0));
|
|
ExprVector v1 = n1.Cross(u1);
|
|
// so in our new csys, we start at (1, 0, 0)
|
|
Expr *costheta1 = aof1.Dot(u1)->Div(r1);
|
|
Expr *sintheta1 = aof1.Dot(v1)->Div(r1);
|
|
|
|
double thetas1, thetaf1, dtheta1;
|
|
arc1->ArcGetAngles(&thetas1, &thetaf1, &dtheta1);
|
|
Expr *theta1;
|
|
if(dtheta1 < 3*PI/4) {
|
|
theta1 = costheta1->ACos();
|
|
} else if(dtheta1 < 5*PI/4) {
|
|
// As the angle crosses pi, cos theta1 is not invertible;
|
|
// so use the sine to stop blowing up
|
|
theta1 = Expr::From(PI)->Minus(sintheta1->ASin());
|
|
} else {
|
|
theta1 = (Expr::From(2*PI))->Minus(costheta1->ACos());
|
|
}
|
|
|
|
// And get the arc2 radius, and the cosine of its angle
|
|
EntityBase *ao2 = SK.GetEntity(arc2->point[0]),
|
|
*as2 = SK.GetEntity(arc2->point[1]),
|
|
*af2 = SK.GetEntity(arc2->point[2]);
|
|
|
|
ExprVector aos2 = (as2->PointGetExprs()).Minus(ao2->PointGetExprs()),
|
|
aof2 = (af2->PointGetExprs()).Minus(ao2->PointGetExprs());
|
|
Expr *r2 = aof2.Magnitude();
|
|
|
|
ExprVector n2 = arc2->Normal()->NormalExprsN();
|
|
ExprVector u2 = aos2.WithMagnitude(Expr::From(1.0));
|
|
ExprVector v2 = n2.Cross(u2);
|
|
// so in our new csys, we start at (1, 0, 0)
|
|
Expr *costheta2 = aof2.Dot(u2)->Div(r2);
|
|
Expr *sintheta2 = aof2.Dot(v2)->Div(r2);
|
|
|
|
double thetas2, thetaf2, dtheta2;
|
|
arc2->ArcGetAngles(&thetas2, &thetaf2, &dtheta2);
|
|
Expr *theta2;
|
|
if(dtheta2 < 3*PI/4) {
|
|
theta2 = costheta2->ACos();
|
|
} else if(dtheta2 < 5*PI/4) {
|
|
// As the angle crosses pi, cos theta2 is not invertible;
|
|
// so use the sine to stop blowing up
|
|
theta2 = Expr::From(PI)->Minus(sintheta2->ASin());
|
|
} else {
|
|
theta2 = (Expr::From(2*PI))->Minus(costheta2->ACos());
|
|
}
|
|
// And write the equation; (r1*theta1) - ( r2*theta2) = some difference
|
|
AddEq(l, (r1->Times(theta1))->Minus(r2->Times(theta2))->Minus(exA), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::ARC_LINE_DIFFERENCE: {
|
|
EntityBase *line = SK.GetEntity(entityA),
|
|
*arc1 = SK.GetEntity(entityB);
|
|
|
|
Expr *ll = Distance(workplane, line->point[0], line->point[1]);
|
|
|
|
// And get the arc1 radius, and the cosine of its angle
|
|
EntityBase *ao1 = SK.GetEntity(arc1->point[0]),
|
|
*as1 = SK.GetEntity(arc1->point[1]),
|
|
*af1 = SK.GetEntity(arc1->point[2]);
|
|
|
|
ExprVector aos1 = (as1->PointGetExprs()).Minus(ao1->PointGetExprs()),
|
|
aof1 = (af1->PointGetExprs()).Minus(ao1->PointGetExprs());
|
|
Expr *r1 = aof1.Magnitude();
|
|
ExprVector n1 = arc1->Normal()->NormalExprsN();
|
|
ExprVector u1 = aos1.WithMagnitude(Expr::From(1.0));
|
|
ExprVector v1 = n1.Cross(u1);
|
|
// so in our new csys, we start at (1, 0, 0)
|
|
Expr *costheta1 = aof1.Dot(u1)->Div(r1);
|
|
Expr *sintheta1 = aof1.Dot(v1)->Div(r1);
|
|
|
|
double thetas1, thetaf1, dtheta1;
|
|
arc1->ArcGetAngles(&thetas1, &thetaf1, &dtheta1);
|
|
Expr *theta1;
|
|
if(dtheta1 < 3*PI/4) {
|
|
theta1 = costheta1->ACos();
|
|
} else if(dtheta1 < 5*PI/4) {
|
|
// As the angle crosses pi, cos theta1 is not invertible;
|
|
// so use the sine to stop blowing up
|
|
theta1 = Expr::From(PI)->Minus(sintheta1->ASin());
|
|
} else {
|
|
theta1 = (Expr::From(2*PI))->Minus(costheta1->ACos());
|
|
}
|
|
// And write the equation; (r1*theta1) - ( length) = some difference
|
|
AddEq(l, (r1->Times(theta1))->Minus(ll)->Minus(exA), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::DIAMETER: {
|
|
EntityBase *circle = SK.GetEntity(entityA);
|
|
Expr *r = circle->CircleGetRadiusExpr();
|
|
AddEq(l, (r->Times(Expr::From(2)))->Minus(exA), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::EQUAL_RADIUS: {
|
|
EntityBase *c1 = SK.GetEntity(entityA);
|
|
EntityBase *c2 = SK.GetEntity(entityB);
|
|
AddEq(l, (c1->CircleGetRadiusExpr())->Minus(
|
|
c2->CircleGetRadiusExpr()), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::EQUAL_LINE_ARC_LEN: {
|
|
EntityBase *line = SK.GetEntity(entityA),
|
|
*arc = SK.GetEntity(entityB);
|
|
|
|
// Get the line length
|
|
ExprVector l0 = SK.GetEntity(line->point[0])->PointGetExprs(),
|
|
l1 = SK.GetEntity(line->point[1])->PointGetExprs();
|
|
Expr *ll = (l1.Minus(l0)).Magnitude();
|
|
|
|
// And get the arc radius, and the cosine of its angle
|
|
EntityBase *ao = SK.GetEntity(arc->point[0]),
|
|
*as = SK.GetEntity(arc->point[1]),
|
|
*af = SK.GetEntity(arc->point[2]);
|
|
|
|
ExprVector aos = (as->PointGetExprs()).Minus(ao->PointGetExprs()),
|
|
aof = (af->PointGetExprs()).Minus(ao->PointGetExprs());
|
|
Expr *r = aof.Magnitude();
|
|
|
|
ExprVector n = arc->Normal()->NormalExprsN();
|
|
ExprVector u = aos.WithMagnitude(Expr::From(1.0));
|
|
ExprVector v = n.Cross(u);
|
|
// so in our new csys, we start at (1, 0, 0)
|
|
Expr *costheta = aof.Dot(u)->Div(r);
|
|
Expr *sintheta = aof.Dot(v)->Div(r);
|
|
|
|
double thetas, thetaf, dtheta;
|
|
arc->ArcGetAngles(&thetas, &thetaf, &dtheta);
|
|
Expr *theta;
|
|
if(dtheta < 3*PI/4) {
|
|
theta = costheta->ACos();
|
|
} else if(dtheta < 5*PI/4) {
|
|
// As the angle crosses pi, cos theta is not invertible;
|
|
// so use the sine to stop blowing up
|
|
theta = Expr::From(PI)->Minus(sintheta->ASin());
|
|
} else {
|
|
theta = (Expr::From(2*PI))->Minus(costheta->ACos());
|
|
}
|
|
|
|
// And write the equation; r*theta = L
|
|
AddEq(l, (r->Times(theta))->Minus(ll), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::POINTS_COINCIDENT: {
|
|
EntityBase *a = SK.GetEntity(ptA);
|
|
EntityBase *b = SK.GetEntity(ptB);
|
|
if(workplane == EntityBase::FREE_IN_3D) {
|
|
ExprVector pa = a->PointGetExprs();
|
|
ExprVector pb = b->PointGetExprs();
|
|
AddEq(l, pa.x->Minus(pb.x), 0);
|
|
AddEq(l, pa.y->Minus(pb.y), 1);
|
|
AddEq(l, pa.z->Minus(pb.z), 2);
|
|
} else {
|
|
Expr *au, *av;
|
|
Expr *bu, *bv;
|
|
a->PointGetExprsInWorkplane(workplane, &au, &av);
|
|
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
|
|
AddEq(l, au->Minus(bu), 0);
|
|
AddEq(l, av->Minus(bv), 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Type::PT_IN_PLANE:
|
|
// This one works the same, whether projected or not.
|
|
AddEq(l, PointPlaneDistance(
|
|
SK.GetEntity(ptA)->PointGetExprs(), entityA), 0);
|
|
return;
|
|
|
|
case Type::PT_ON_FACE: {
|
|
// a plane, n dot (p - p0) = 0
|
|
ExprVector p = SK.GetEntity(ptA)->PointGetExprs();
|
|
EntityBase *f = SK.GetEntity(entityA);
|
|
ExprVector p0 = f->FaceGetPointExprs();
|
|
ExprVector n = f->FaceGetNormalExprs();
|
|
AddEq(l, (p.Minus(p0)).Dot(n), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::PT_ON_LINE: {
|
|
EntityBase *ln = SK.GetEntity(entityA);
|
|
EntityBase *a = SK.GetEntity(ln->point[0]);
|
|
EntityBase *b = SK.GetEntity(ln->point[1]);
|
|
EntityBase *p = SK.GetEntity(ptA);
|
|
|
|
ExprVector ep = p->PointGetExprsInWorkplane(workplane);
|
|
ExprVector ea = a->PointGetExprsInWorkplane(workplane);
|
|
ExprVector eb = b->PointGetExprsInWorkplane(workplane);
|
|
|
|
ExprVector ptOnLine = ea.Plus(eb.Minus(ea).ScaledBy(Expr::From(valP)));
|
|
ExprVector eq = ptOnLine.Minus(ep);
|
|
|
|
AddEq(l, eq);
|
|
return;
|
|
}
|
|
|
|
case Type::PT_ON_CIRCLE: {
|
|
// This actually constrains the point to lie on the cylinder.
|
|
EntityBase *circle = SK.GetEntity(entityA);
|
|
ExprVector center = SK.GetEntity(circle->point[0])->PointGetExprs();
|
|
ExprVector pt = SK.GetEntity(ptA)->PointGetExprs();
|
|
EntityBase *normal = SK.GetEntity(circle->normal);
|
|
ExprVector u = normal->NormalExprsU(),
|
|
v = normal->NormalExprsV();
|
|
|
|
Expr *du = (center.Minus(pt)).Dot(u),
|
|
*dv = (center.Minus(pt)).Dot(v);
|
|
|
|
Expr *r = circle->CircleGetRadiusExpr();
|
|
|
|
AddEq(l, du->Square()->Plus(dv->Square())->Sqrt()->Minus(r), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::AT_MIDPOINT:
|
|
if(workplane == EntityBase::FREE_IN_3D) {
|
|
EntityBase *ln = SK.GetEntity(entityA);
|
|
ExprVector a = SK.GetEntity(ln->point[0])->PointGetExprs();
|
|
ExprVector b = SK.GetEntity(ln->point[1])->PointGetExprs();
|
|
ExprVector m = (a.Plus(b)).ScaledBy(Expr::From(0.5));
|
|
|
|
if(ptA.v) {
|
|
ExprVector p = SK.GetEntity(ptA)->PointGetExprs();
|
|
AddEq(l, (m.x)->Minus(p.x), 0);
|
|
AddEq(l, (m.y)->Minus(p.y), 1);
|
|
AddEq(l, (m.z)->Minus(p.z), 2);
|
|
} else {
|
|
AddEq(l, PointPlaneDistance(m, entityB), 0);
|
|
}
|
|
} else {
|
|
EntityBase *ln = SK.GetEntity(entityA);
|
|
EntityBase *a = SK.GetEntity(ln->point[0]);
|
|
EntityBase *b = SK.GetEntity(ln->point[1]);
|
|
|
|
Expr *au, *av, *bu, *bv;
|
|
a->PointGetExprsInWorkplane(workplane, &au, &av);
|
|
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
|
|
Expr *mu = Expr::From(0.5)->Times(au->Plus(bu));
|
|
Expr *mv = Expr::From(0.5)->Times(av->Plus(bv));
|
|
|
|
if(ptA.v) {
|
|
EntityBase *p = SK.GetEntity(ptA);
|
|
Expr *pu, *pv;
|
|
p->PointGetExprsInWorkplane(workplane, &pu, &pv);
|
|
AddEq(l, pu->Minus(mu), 0);
|
|
AddEq(l, pv->Minus(mv), 1);
|
|
} else {
|
|
ExprVector m = PointInThreeSpace(workplane, mu, mv);
|
|
AddEq(l, PointPlaneDistance(m, entityB), 0);
|
|
}
|
|
}
|
|
return;
|
|
|
|
case Type::SYMMETRIC:
|
|
if(workplane == EntityBase::FREE_IN_3D) {
|
|
EntityBase *plane = SK.GetEntity(entityA);
|
|
EntityBase *ea = SK.GetEntity(ptA);
|
|
EntityBase *eb = SK.GetEntity(ptB);
|
|
ExprVector a = ea->PointGetExprs();
|
|
ExprVector b = eb->PointGetExprs();
|
|
|
|
// The midpoint of the line connecting the symmetric points
|
|
// lies on the plane of the symmetry.
|
|
ExprVector m = (a.Plus(b)).ScaledBy(Expr::From(0.5));
|
|
AddEq(l, PointPlaneDistance(m, plane->h), 0);
|
|
|
|
// And projected into the plane of symmetry, the points are
|
|
// coincident.
|
|
Expr *au, *av, *bu, *bv;
|
|
ea->PointGetExprsInWorkplane(plane->h, &au, &av);
|
|
eb->PointGetExprsInWorkplane(plane->h, &bu, &bv);
|
|
AddEq(l, au->Minus(bu), 1);
|
|
AddEq(l, av->Minus(bv), 2);
|
|
} else {
|
|
EntityBase *plane = SK.GetEntity(entityA);
|
|
EntityBase *a = SK.GetEntity(ptA);
|
|
EntityBase *b = SK.GetEntity(ptB);
|
|
|
|
Expr *au, *av, *bu, *bv;
|
|
a->PointGetExprsInWorkplane(workplane, &au, &av);
|
|
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
|
|
Expr *mu = Expr::From(0.5)->Times(au->Plus(bu));
|
|
Expr *mv = Expr::From(0.5)->Times(av->Plus(bv));
|
|
|
|
ExprVector m = PointInThreeSpace(workplane, mu, mv);
|
|
AddEq(l, PointPlaneDistance(m, plane->h), 0);
|
|
|
|
// Construct a vector within the workplane that is normal
|
|
// to the symmetry pane's normal (i.e., that lies in the
|
|
// plane of symmetry). The line connecting the points is
|
|
// perpendicular to that constructed vector.
|
|
EntityBase *w = SK.GetEntity(workplane);
|
|
ExprVector u = w->Normal()->NormalExprsU();
|
|
ExprVector v = w->Normal()->NormalExprsV();
|
|
|
|
ExprVector pa = a->PointGetExprs();
|
|
ExprVector pb = b->PointGetExprs();
|
|
ExprVector n;
|
|
Expr *d;
|
|
plane->WorkplaneGetPlaneExprs(&n, &d);
|
|
AddEq(l, (n.Cross(u.Cross(v))).Dot(pa.Minus(pb)), 1);
|
|
}
|
|
return;
|
|
|
|
case Type::SYMMETRIC_HORIZ:
|
|
case Type::SYMMETRIC_VERT: {
|
|
ssassert(workplane != Entity::FREE_IN_3D,
|
|
"Unexpected horizontal/vertical symmetric constraint in 3d");
|
|
|
|
EntityBase *a = SK.GetEntity(ptA);
|
|
EntityBase *b = SK.GetEntity(ptB);
|
|
|
|
Expr *au, *av, *bu, *bv;
|
|
a->PointGetExprsInWorkplane(workplane, &au, &av);
|
|
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
|
|
|
|
if(type == Type::SYMMETRIC_HORIZ) {
|
|
AddEq(l, av->Minus(bv), 0);
|
|
AddEq(l, au->Plus(bu), 1);
|
|
} else {
|
|
AddEq(l, au->Minus(bu), 0);
|
|
AddEq(l, av->Plus(bv), 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Type::SYMMETRIC_LINE: {
|
|
EntityBase *pa = SK.GetEntity(ptA);
|
|
EntityBase *pb = SK.GetEntity(ptB);
|
|
|
|
Expr *pau, *pav, *pbu, *pbv;
|
|
pa->PointGetExprsInWorkplane(workplane, &pau, &pav);
|
|
pb->PointGetExprsInWorkplane(workplane, &pbu, &pbv);
|
|
|
|
EntityBase *ln = SK.GetEntity(entityA);
|
|
EntityBase *la = SK.GetEntity(ln->point[0]);
|
|
EntityBase *lb = SK.GetEntity(ln->point[1]);
|
|
Expr *lau, *lav, *lbu, *lbv;
|
|
la->PointGetExprsInWorkplane(workplane, &lau, &lav);
|
|
lb->PointGetExprsInWorkplane(workplane, &lbu, &lbv);
|
|
|
|
Expr *dpu = pbu->Minus(pau), *dpv = pbv->Minus(pav);
|
|
Expr *dlu = lbu->Minus(lau), *dlv = lbv->Minus(lav);
|
|
|
|
// The line through the points is perpendicular to the line
|
|
// of symmetry.
|
|
AddEq(l, (dlu->Times(dpu))->Plus(dlv->Times(dpv)), 0);
|
|
|
|
// And the signed distances of the points to the line are
|
|
// equal in magnitude and opposite in sign, so sum to zero
|
|
Expr *dista = (dlv->Times(lau->Minus(pau)))->Minus(
|
|
(dlu->Times(lav->Minus(pav))));
|
|
Expr *distb = (dlv->Times(lau->Minus(pbu)))->Minus(
|
|
(dlu->Times(lav->Minus(pbv))));
|
|
AddEq(l, dista->Plus(distb), 1);
|
|
|
|
return;
|
|
}
|
|
|
|
case Type::HORIZONTAL:
|
|
case Type::VERTICAL: {
|
|
ssassert(workplane != Entity::FREE_IN_3D,
|
|
"Unexpected horizontal/vertical constraint in 3d");
|
|
|
|
hEntity ha, hb;
|
|
if(entityA.v) {
|
|
EntityBase *e = SK.GetEntity(entityA);
|
|
ha = e->point[0];
|
|
hb = e->point[1];
|
|
} else {
|
|
ha = ptA;
|
|
hb = ptB;
|
|
}
|
|
EntityBase *a = SK.GetEntity(ha);
|
|
EntityBase *b = SK.GetEntity(hb);
|
|
|
|
Expr *au, *av, *bu, *bv;
|
|
a->PointGetExprsInWorkplane(workplane, &au, &av);
|
|
b->PointGetExprsInWorkplane(workplane, &bu, &bv);
|
|
|
|
AddEq(l, (type == Type::HORIZONTAL) ? av->Minus(bv) : au->Minus(bu), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::SAME_ORIENTATION: {
|
|
EntityBase *a = SK.GetEntity(entityA);
|
|
EntityBase *b = SK.GetEntity(entityB);
|
|
|
|
ExprVector au = a->NormalExprsU(),
|
|
an = a->NormalExprsN();
|
|
ExprVector bu = b->NormalExprsU(),
|
|
bv = b->NormalExprsV(),
|
|
bn = b->NormalExprsN();
|
|
|
|
ExprVector eq = VectorsParallel3d(an, bn, valP);
|
|
AddEq(l, eq.x, 0);
|
|
AddEq(l, eq.y, 1);
|
|
AddEq(l, eq.z, 2);
|
|
Expr *d1 = au.Dot(bv);
|
|
Expr *d2 = au.Dot(bu);
|
|
// Allow either orientation for the coordinate system, depending
|
|
// on how it was drawn.
|
|
if(fabs(d1->Eval()) < fabs(d2->Eval())) {
|
|
AddEq(l, d1, 3);
|
|
} else {
|
|
AddEq(l, d2, 3);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Type::PERPENDICULAR:
|
|
case Type::ANGLE: {
|
|
EntityBase *a = SK.GetEntity(entityA);
|
|
EntityBase *b = SK.GetEntity(entityB);
|
|
ExprVector ae = a->VectorGetExprs();
|
|
ExprVector be = b->VectorGetExprs();
|
|
if(other) ae = ae.ScaledBy(Expr::From(-1));
|
|
Expr *c = DirectionCosine(workplane, ae, be);
|
|
|
|
if(type == Type::ANGLE) {
|
|
// The direction cosine is equal to the cosine of the
|
|
// specified angle
|
|
Expr *rads = exA->Times(Expr::From(PI/180)),
|
|
*rc = rads->Cos();
|
|
double arc = fabs(rc->Eval());
|
|
// avoid false detection of inconsistent systems by gaining
|
|
// up as the difference in dot products gets small at small
|
|
// angles; doubles still have plenty of precision, only
|
|
// problem is that rank test
|
|
Expr *mult = Expr::From(arc > 0.99 ? 0.01/(1.00001 - arc) : 1);
|
|
AddEq(l, (c->Minus(rc))->Times(mult), 0);
|
|
} else {
|
|
// The dot product (and therefore the direction cosine)
|
|
// is equal to zero, perpendicular.
|
|
AddEq(l, c, 0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Type::EQUAL_ANGLE: {
|
|
EntityBase *a = SK.GetEntity(entityA);
|
|
EntityBase *b = SK.GetEntity(entityB);
|
|
EntityBase *c = SK.GetEntity(entityC);
|
|
EntityBase *d = SK.GetEntity(entityD);
|
|
ExprVector ae = a->VectorGetExprs();
|
|
ExprVector be = b->VectorGetExprs();
|
|
ExprVector ce = c->VectorGetExprs();
|
|
ExprVector de = d->VectorGetExprs();
|
|
|
|
if(other) ae = ae.ScaledBy(Expr::From(-1));
|
|
|
|
Expr *cab = DirectionCosine(workplane, ae, be);
|
|
Expr *ccd = DirectionCosine(workplane, ce, de);
|
|
|
|
AddEq(l, cab->Minus(ccd), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::ARC_LINE_TANGENT: {
|
|
EntityBase *arc = SK.GetEntity(entityA);
|
|
EntityBase *line = SK.GetEntity(entityB);
|
|
|
|
ExprVector ac = SK.GetEntity(arc->point[0])->PointGetExprs();
|
|
ExprVector ap =
|
|
SK.GetEntity(arc->point[other ? 2 : 1])->PointGetExprs();
|
|
|
|
ExprVector ld = line->VectorGetExprs();
|
|
|
|
// The line is perpendicular to the radius
|
|
AddEq(l, ld.Dot(ac.Minus(ap)), 0);
|
|
return;
|
|
}
|
|
|
|
case Type::CUBIC_LINE_TANGENT: {
|
|
EntityBase *cubic = SK.GetEntity(entityA);
|
|
EntityBase *line = SK.GetEntity(entityB);
|
|
|
|
ExprVector a;
|
|
if(other) {
|
|
a = cubic->CubicGetFinishTangentExprs();
|
|
} else {
|
|
a = cubic->CubicGetStartTangentExprs();
|
|
}
|
|
|
|
ExprVector b = line->VectorGetExprs();
|
|
|
|
if(workplane == EntityBase::FREE_IN_3D) {
|
|
ExprVector eq = VectorsParallel3d(a, b, valP);
|
|
AddEq(l, eq);
|
|
} else {
|
|
EntityBase *w = SK.GetEntity(workplane);
|
|
ExprVector wn = w->Normal()->NormalExprsN();
|
|
AddEq(l, (a.Cross(b)).Dot(wn), 0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Type::CURVE_CURVE_TANGENT: {
|
|
bool parallel = true;
|
|
int i;
|
|
ExprVector dir[2];
|
|
for(i = 0; i < 2; i++) {
|
|
EntityBase *e = SK.GetEntity((i == 0) ? entityA : entityB);
|
|
bool oth = (i == 0) ? other : other2;
|
|
|
|
if(e->type == Entity::Type::ARC_OF_CIRCLE) {
|
|
ExprVector center, endpoint;
|
|
center = SK.GetEntity(e->point[0])->PointGetExprs();
|
|
endpoint =
|
|
SK.GetEntity(e->point[oth ? 2 : 1])->PointGetExprs();
|
|
dir[i] = endpoint.Minus(center);
|
|
// We're using the vector from the center of the arc to
|
|
// an endpoint; so that's normal to the tangent, not
|
|
// parallel.
|
|
parallel = !parallel;
|
|
} else if(e->type == Entity::Type::CUBIC) { // BRANCH_ALWAYS_TAKEN
|
|
if(oth) {
|
|
dir[i] = e->CubicGetFinishTangentExprs();
|
|
} else {
|
|
dir[i] = e->CubicGetStartTangentExprs();
|
|
}
|
|
} else {
|
|
ssassert(false, "Unexpected entity types for CURVE_CURVE_TANGENT");
|
|
}
|
|
}
|
|
if(parallel) {
|
|
EntityBase *w = SK.GetEntity(workplane);
|
|
ExprVector wn = w->Normal()->NormalExprsN();
|
|
AddEq(l, ((dir[0]).Cross(dir[1])).Dot(wn), 0);
|
|
} else {
|
|
AddEq(l, (dir[0]).Dot(dir[1]), 0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Type::PARALLEL: {
|
|
EntityBase *ea = SK.GetEntity(entityA), *eb = SK.GetEntity(entityB);
|
|
ExprVector a = ea->VectorGetExprsInWorkplane(workplane);
|
|
ExprVector b = eb->VectorGetExprsInWorkplane(workplane);
|
|
|
|
if(workplane == EntityBase::FREE_IN_3D) {
|
|
ExprVector eq = VectorsParallel3d(a, b, valP);
|
|
AddEq(l, eq);
|
|
} else {
|
|
// We use expressions written in workplane csys, so we can assume the workplane
|
|
// normal is (0, 0, 1). We can write the equation as:
|
|
// Expr *eq = a.Cross(b).Dot(ExprVector::From(0.0, 0.0, 1.0));
|
|
// but this will just result in elimination of x and y terms after dot product.
|
|
// We can only use the z expression:
|
|
// Expr *eq = a.Cross(b).z;
|
|
// but it's more efficient to write it in the terms of pseudo-scalar product:
|
|
Expr *eq = (a.x->Times(b.y))->Minus(a.y->Times(b.x));
|
|
AddEq(l, eq, 0);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case Type::WHERE_DRAGGED: {
|
|
EntityBase *ep = SK.GetEntity(ptA);
|
|
if(workplane == EntityBase::FREE_IN_3D) {
|
|
ExprVector ev = ep->PointGetExprs();
|
|
Vector v = ep->PointGetNum();
|
|
|
|
AddEq(l, ev.x->Minus(Expr::From(v.x)), 0);
|
|
AddEq(l, ev.y->Minus(Expr::From(v.y)), 1);
|
|
AddEq(l, ev.z->Minus(Expr::From(v.z)), 2);
|
|
} else {
|
|
Expr *u, *v;
|
|
ep->PointGetExprsInWorkplane(workplane, &u, &v);
|
|
AddEq(l, u->Minus(Expr::From(u->Eval())), 0);
|
|
AddEq(l, v->Minus(Expr::From(v->Eval())), 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Type::COMMENT:
|
|
return;
|
|
}
|
|
ssassert(false, "Unexpected constraint ID");
|
|
}
|
|
|