solvespace/src/drawentity.cpp

839 lines
29 KiB
C++

//-----------------------------------------------------------------------------
// Draw a representation of an entity on-screen, in the case of curves up
// to our chord tolerance, or return the distance from the user's mouse pointer
// to the entity for selection.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
std::string Entity::DescriptionString() const {
if(h.isFromRequest()) {
Request *r = SK.GetRequest(h.request());
return r->DescriptionString();
} else {
Group *g = SK.GetGroup(h.group());
return g->DescriptionString();
}
}
void Entity::GenerateEdges(SEdgeList *el) {
SBezierList *sbl = GetOrGenerateBezierCurves();
for(int i = 0; i < sbl->l.n; i++) {
SBezier *sb = &(sbl->l[i]);
List<Vector> lv = {};
sb->MakePwlInto(&lv);
for(int j = 1; j < lv.n; j++) {
el->AddEdge(lv[j-1], lv[j], Style::ForEntity(h).v, i);
}
lv.Clear();
}
}
SBezierList *Entity::GetOrGenerateBezierCurves() {
if(beziers.l.IsEmpty())
GenerateBezierCurves(&beziers);
return &beziers;
}
SEdgeList *Entity::GetOrGenerateEdges() {
if(!edges.l.IsEmpty()) {
if(EXACT(edgesChordTol == SS.ChordTolMm()))
return &edges;
edges.l.Clear();
}
if(edges.l.IsEmpty())
GenerateEdges(&edges);
edgesChordTol = SS.ChordTolMm();
return &edges;
}
BBox Entity::GetOrGenerateScreenBBox(bool *hasBBox) {
SBezierList *sbl = GetOrGenerateBezierCurves();
// We don't bother with bounding boxes for workplanes, etc.
*hasBBox = (IsPoint() || IsNormal() || !sbl->l.IsEmpty());
if(!*hasBBox) return {};
if(screenBBoxValid)
return screenBBox;
if(IsPoint()) {
Vector proj = SS.GW.ProjectPoint3(PointGetNum());
screenBBox = BBox::From(proj, proj);
} else if(IsNormal()) {
Vector proj = SS.GW.ProjectPoint3(SK.GetEntity(point[0])->PointGetNum());
screenBBox = BBox::From(proj, proj);
} else if(!sbl->l.IsEmpty()) {
Vector first = SS.GW.ProjectPoint3(sbl->l[0].ctrl[0]);
screenBBox = BBox::From(first, first);
for(auto &sb : sbl->l) {
for(int i = 0; i <= sb.deg; ++i) { screenBBox.Include(SS.GW.ProjectPoint3(sb.ctrl[i])); }
}
} else
ssassert(false, "Expected entity to be a point or have beziers");
screenBBoxValid = true;
return screenBBox;
}
void Entity::GetReferencePoints(std::vector<Vector> *refs) {
switch(type) {
case Type::POINT_N_COPY:
case Type::POINT_N_TRANS:
case Type::POINT_N_ROT_TRANS:
case Type::POINT_N_ROT_AA:
case Type::POINT_N_ROT_AXIS_TRANS:
case Type::POINT_IN_3D:
case Type::POINT_IN_2D:
refs->push_back(PointGetDrawNum());
break;
case Type::NORMAL_N_COPY:
case Type::NORMAL_N_ROT:
case Type::NORMAL_N_ROT_AA:
case Type::NORMAL_IN_3D:
case Type::NORMAL_IN_2D:
case Type::WORKPLANE:
case Type::CIRCLE:
case Type::ARC_OF_CIRCLE:
case Type::CUBIC:
case Type::CUBIC_PERIODIC:
case Type::TTF_TEXT:
case Type::IMAGE:
refs->push_back(SK.GetEntity(point[0])->PointGetDrawNum());
break;
case Type::LINE_SEGMENT: {
Vector a = SK.GetEntity(point[0])->PointGetDrawNum(),
b = SK.GetEntity(point[1])->PointGetDrawNum();
refs->push_back(b.Plus(a.Minus(b).ScaledBy(0.5)));
break;
}
case Type::DISTANCE:
case Type::DISTANCE_N_COPY:
case Type::FACE_NORMAL_PT:
case Type::FACE_XPROD:
case Type::FACE_N_ROT_TRANS:
case Type::FACE_N_TRANS:
case Type::FACE_N_ROT_AA:
case Type::FACE_ROT_NORMAL_PT:
case Type::FACE_N_ROT_AXIS_TRANS:
break;
}
}
int Entity::GetPositionOfPoint(const Camera &camera, Point2d p) {
int position;
ObjectPicker canvas = {};
canvas.camera = camera;
canvas.point = p;
canvas.minDistance = 1e12;
Draw(DrawAs::DEFAULT, &canvas);
position = canvas.position;
canvas.Clear();
return position;
}
bool Entity::IsStylable() const {
if(IsPoint()) return false;
if(IsWorkplane()) return false;
if(IsNormal()) return false;
return true;
}
bool Entity::IsVisible() const {
Group *g = SK.GetGroup(group);
if(g->h == Group::HGROUP_REFERENCES && IsNormal()) {
// The reference normals are always shown
return true;
}
if(!(g->IsVisible())) return false;
if(IsPoint() && !SS.GW.showPoints) return false;
if(IsNormal() && !SS.GW.showNormals) return false;
if(construction && !SS.GW.showConstruction) return false;
if(!SS.GW.showWorkplanes) {
if(IsWorkplane() && !h.isFromRequest()) {
if(g->h != SS.GW.activeGroup) {
// The group-associated workplanes are hidden outside
// their group.
return false;
}
}
}
if(style.v) {
Style *s = Style::Get(style);
if(!s->visible) return false;
}
if(forceHidden) return false;
return true;
}
// entities that were created via some copy types will not be
// draggable with the mouse. We identify the undraggables here
bool Entity::CanBeDragged() const {
// a numeric copy can not move
if(type == Entity::Type::POINT_N_COPY) return false;
// these transforms applied zero times can not be moved
if(((type == Entity::Type::POINT_N_TRANS) ||
(type == Entity::Type::POINT_N_ROT_AA) ||
(type == Entity::Type::POINT_N_ROT_AXIS_TRANS))
&& (timesApplied == 0)) return false;
// for these types of entities the first point will indicate draggability
if(HasEndpoints() || type == Entity::Type::CIRCLE) {
return SK.GetEntity(point[0])->CanBeDragged();
}
// if we're not certain it can't be dragged then default to true
return true;
}
void Entity::CalculateNumerical(bool forExport) {
if(IsPoint()) actPoint = PointGetNum();
if(IsNormal()) actNormal = NormalGetNum();
if(type == Type::DISTANCE || type == Type::DISTANCE_N_COPY) {
actDistance = DistanceGetNum();
}
if(IsFace()) {
actPoint = FaceGetPointNum();
Vector n = FaceGetNormalNum();
actNormal = Quaternion::From(0, n.x, n.y, n.z);
}
if(forExport) {
// Visibility in copied linked entities follows source file
actVisible = IsVisible();
} else {
// Copied entities within a file are always visible
actVisible = true;
}
}
//-----------------------------------------------------------------------------
// Compute a cubic, second derivative continuous, interpolating spline. Same
// routine for periodic splines (in a loop) or open splines (with specified
// end tangents).
//-----------------------------------------------------------------------------
void Entity::ComputeInterpolatingSpline(SBezierList *sbl, bool periodic) const {
static const int MAX_N = BandedMatrix::MAX_UNKNOWNS;
int ep = extraPoints;
// The number of unknowns to solve for.
int n = periodic ? 3 + ep : ep;
ssassert(n < MAX_N, "Too many unknowns");
// The number of on-curve points, one more than the number of segments.
int pts = periodic ? 4 + ep : 2 + ep;
int i, j, a;
// The starting and finishing control points that define our end tangents
// (if the spline isn't periodic), and the on-curve points.
Vector ctrl_s = Vector::From(0, 0, 0);
Vector ctrl_f = Vector::From(0, 0, 0);
Vector pt[MAX_N+4];
if(periodic) {
for(i = 0; i < ep + 3; i++) {
pt[i] = SK.GetEntity(point[i])->PointGetNum();
}
pt[i++] = SK.GetEntity(point[0])->PointGetNum();
} else {
ctrl_s = SK.GetEntity(point[1])->PointGetNum();
ctrl_f = SK.GetEntity(point[ep+2])->PointGetNum();
j = 0;
pt[j++] = SK.GetEntity(point[0])->PointGetNum();
for(i = 2; i <= ep + 1; i++) {
pt[j++] = SK.GetEntity(point[i])->PointGetNum();
}
pt[j++] = SK.GetEntity(point[ep+3])->PointGetNum();
}
// The unknowns that we will be solving for, a set for each coordinate.
double Xx[MAX_N], Xy[MAX_N], Xz[MAX_N];
// For a cubic Bezier section f(t) as t goes from 0 to 1,
// f' (0) = 3*(P1 - P0)
// f' (1) = 3*(P3 - P2)
// f''(0) = 6*(P0 - 2*P1 + P2)
// f''(1) = 6*(P3 - 2*P2 + P1)
for(a = 0; a < 3; a++) {
BandedMatrix bm = {};
bm.n = n;
for(i = 0; i < n; i++) {
int im, it, ip;
if(periodic) {
im = WRAP(i - 1, n);
it = i;
ip = WRAP(i + 1, n);
} else {
im = i;
it = i + 1;
ip = i + 2;
}
// All of these are expressed in terms of a constant part, and
// of X[i-1], X[i], and X[i+1]; so let these be the four
// components of that vector;
Vector4 A, B, C, D, E;
// The on-curve interpolated point
C = Vector4::From((pt[it]).Element(a), 0, 0, 0);
// control point one back, C - X[i]
B = C.Plus(Vector4::From(0, 0, -1, 0));
// control point one forward, C + X[i]
D = C.Plus(Vector4::From(0, 0, 1, 0));
// control point two back
if(i == 0 && !periodic) {
A = Vector4::From(ctrl_s.Element(a), 0, 0, 0);
} else {
// pt[im] + X[i-1]
A = Vector4::From(pt[im].Element(a), 1, 0, 0);
}
// control point two forward
if(i == (n - 1) && !periodic) {
E = Vector4::From(ctrl_f.Element(a), 0, 0, 0);
} else {
// pt[ip] - X[i+1]
E = Vector4::From((pt[ip]).Element(a), 0, 0, -1);
}
// Write the second derivatives of each segment, dropping constant
Vector4 fprev_pp = (C.Minus(B.ScaledBy(2))).Plus(A),
fnext_pp = (C.Minus(D.ScaledBy(2))).Plus(E),
eq = fprev_pp.Minus(fnext_pp);
bm.B[i] = -eq.w;
if(periodic) {
bm.A[i][WRAP(i-2, n)] = eq.x;
bm.A[i][WRAP(i-1, n)] = eq.y;
bm.A[i][i] = eq.z;
} else {
// The wrapping would work, except when n = 1 and everything
// wraps to zero...
if(i > 0) {
bm.A[i][i - 1] = eq.x;
}
bm.A[i][i] = eq.y;
if(i < (n-1)) {
bm.A[i][i + 1] = eq.z;
}
}
}
bm.Solve();
double *X = (a == 0) ? Xx :
(a == 1) ? Xy :
Xz;
memcpy(X, bm.X, n*sizeof(double));
}
for(i = 0; i < pts - 1; i++) {
Vector p0, p1, p2, p3;
if(periodic) {
p0 = pt[i];
int iw = WRAP(i - 1, n);
p1 = p0.Plus(Vector::From(Xx[iw], Xy[iw], Xz[iw]));
} else if(i == 0) {
p0 = pt[0];
p1 = ctrl_s;
} else {
p0 = pt[i];
p1 = p0.Plus(Vector::From(Xx[i-1], Xy[i-1], Xz[i-1]));
}
if(periodic) {
p3 = pt[i+1];
int iw = WRAP(i, n);
p2 = p3.Minus(Vector::From(Xx[iw], Xy[iw], Xz[iw]));
} else if(i == (pts - 2)) {
p3 = pt[pts-1];
p2 = ctrl_f;
} else {
p3 = pt[i+1];
p2 = p3.Minus(Vector::From(Xx[i], Xy[i], Xz[i]));
}
SBezier sb = SBezier::From(p0, p1, p2, p3);
sbl->l.Add(&sb);
}
}
void Entity::GenerateBezierCurves(SBezierList *sbl) const {
SBezier sb;
int i = sbl->l.n;
switch(type) {
case Type::LINE_SEGMENT: {
Vector a = SK.GetEntity(point[0])->PointGetNum();
Vector b = SK.GetEntity(point[1])->PointGetNum();
sb = SBezier::From(a, b);
sb.entity = h.v;
sbl->l.Add(&sb);
break;
}
case Type::CUBIC:
ComputeInterpolatingSpline(sbl, /*periodic=*/false);
break;
case Type::CUBIC_PERIODIC:
ComputeInterpolatingSpline(sbl, /*periodic=*/true);
break;
case Type::CIRCLE:
case Type::ARC_OF_CIRCLE: {
Vector center = SK.GetEntity(point[0])->PointGetNum();
Quaternion q = SK.GetEntity(normal)->NormalGetNum();
Vector u = q.RotationU(), v = q.RotationV();
double r = CircleGetRadiusNum();
double thetaa, thetab, dtheta;
if(r < LENGTH_EPS) {
// If a circle or an arc gets dragged through zero radius,
// then we just don't generate anything.
break;
}
if(type == Type::CIRCLE) {
thetaa = 0;
thetab = 2*PI;
dtheta = 2*PI;
} else {
ArcGetAngles(&thetaa, &thetab, &dtheta);
}
int i, n;
if(dtheta > (3*PI/2 + 0.01)) {
n = 4;
} else if(dtheta > (PI + 0.01)) {
n = 3;
} else if(dtheta > (PI/2 + 0.01)) {
n = 2;
} else {
n = 1;
}
dtheta /= n;
for(i = 0; i < n; i++) {
double s, c;
c = cos(thetaa);
s = sin(thetaa);
// The start point of the curve, and the tangent vector at
// that start point.
Vector p0 = center.Plus(u.ScaledBy( r*c)).Plus(v.ScaledBy(r*s)),
t0 = u.ScaledBy(-r*s). Plus(v.ScaledBy(r*c));
thetaa += dtheta;
c = cos(thetaa);
s = sin(thetaa);
Vector p2 = center.Plus(u.ScaledBy( r*c)).Plus(v.ScaledBy(r*s)),
t2 = u.ScaledBy(-r*s). Plus(v.ScaledBy(r*c));
// The control point must lie on both tangents.
Vector p1 = Vector::AtIntersectionOfLines(p0, p0.Plus(t0),
p2, p2.Plus(t2),
NULL);
SBezier sb = SBezier::From(p0, p1, p2);
sb.weight[1] = cos(dtheta/2);
sbl->l.Add(&sb);
}
break;
}
case Type::TTF_TEXT: {
Vector topLeft = SK.GetEntity(point[0])->PointGetNum();
Vector botLeft = SK.GetEntity(point[1])->PointGetNum();
Vector n = Normal()->NormalN();
Vector v = topLeft.Minus(botLeft);
Vector u = (v.Cross(n)).WithMagnitude(v.Magnitude());
SS.fonts.PlotString(font, str, sbl, botLeft, u, v);
break;
}
default:
// Not a problem, points and normals and such don't generate curves
break;
}
// Record our style for all of the Beziers that we just created.
for(; i < sbl->l.n; i++) {
sbl->l[i].auxA = Style::ForEntity(h).v;
}
}
bool Entity::ShouldDrawExploded() const {
return SK.GetGroup(group)->ShouldDrawExploded();
}
Vector Entity::ExplodeOffset() const {
if(ShouldDrawExploded() && workplane.v != 0) {
int requestIdx = SK.GetRequest(h.request())->groupRequestIndex;
double offset = SS.explodeDistance * (requestIdx + 1);
return SK.GetEntity(workplane)->Normal()->NormalN().ScaledBy(offset);
} else {
return Vector::From(0, 0, 0);
}
}
Vector Entity::PointGetDrawNum() const {
// As per EntityBase::PointGetNum but specifically for when drawing/rendering the point
// (and not when solving), so we can potentially draw it somewhere different
return PointGetNum().Plus(ExplodeOffset());
}
void Entity::Draw(DrawAs how, Canvas *canvas) {
if(!(how == DrawAs::HOVERED || how == DrawAs::SELECTED) &&
!IsVisible()) return;
int zIndex;
if(IsPoint()) {
zIndex = 6;
} else if(how == DrawAs::HIDDEN) {
zIndex = 2;
} else if(group != SS.GW.activeGroup) {
zIndex = 3;
} else {
zIndex = 5;
}
hStyle hs;
if(IsPoint()) {
hs.v = Style::DATUM;
} else if(IsNormal() || type == Type::WORKPLANE) {
hs.v = Style::NORMALS;
} else {
hs = Style::ForEntity(h);
if (hs.v == Style::CONSTRUCTION) {
zIndex = 4;
}
}
Canvas::Stroke stroke = Style::Stroke(hs);
switch(how) {
case DrawAs::DEFAULT:
stroke.layer = Canvas::Layer::NORMAL;
break;
case DrawAs::OVERLAY:
stroke.layer = Canvas::Layer::FRONT;
break;
case DrawAs::HIDDEN:
stroke.layer = Canvas::Layer::OCCLUDED;
stroke.stipplePattern = Style::PatternType({ Style::HIDDEN_EDGE });
stroke.stippleScale = Style::Get({ Style::HIDDEN_EDGE })->stippleScale;
break;
case DrawAs::HOVERED:
stroke.layer = Canvas::Layer::FRONT;
stroke.color = Style::Color(Style::HOVERED);
break;
case DrawAs::SELECTED:
stroke.layer = Canvas::Layer::FRONT;
stroke.color = Style::Color(Style::SELECTED);
break;
}
stroke.zIndex = zIndex;
Canvas::hStroke hcs = canvas->GetStroke(stroke);
switch(type) {
case Type::POINT_N_COPY:
case Type::POINT_N_TRANS:
case Type::POINT_N_ROT_TRANS:
case Type::POINT_N_ROT_AA:
case Type::POINT_N_ROT_AXIS_TRANS:
case Type::POINT_IN_3D:
case Type::POINT_IN_2D: {
if(how == DrawAs::HIDDEN) return;
// If we're analyzing the sketch to show the degrees of freedom,
// then we draw big colored squares over the points that are
// free to move.
bool free = false;
if(type == Type::POINT_IN_3D) {
Param *px = SK.GetParam(param[0]),
*py = SK.GetParam(param[1]),
*pz = SK.GetParam(param[2]);
free = px->free || py->free || pz->free;
} else if(type == Type::POINT_IN_2D) {
Param *pu = SK.GetParam(param[0]),
*pv = SK.GetParam(param[1]);
free = pu->free || pv->free;
}
Canvas::Stroke pointStroke = {};
pointStroke.layer = (free) ? Canvas::Layer::FRONT : stroke.layer;
pointStroke.zIndex = stroke.zIndex;
pointStroke.color = stroke.color;
pointStroke.width = 7.0;
pointStroke.unit = Canvas::Unit::PX;
Canvas::hStroke hcsPoint = canvas->GetStroke(pointStroke);
Vector p = PointGetDrawNum();
if(free) {
Canvas::Stroke analyzeStroke = Style::Stroke(Style::ANALYZE);
analyzeStroke.width = 14.0;
analyzeStroke.layer = Canvas::Layer::FRONT;
Canvas::hStroke hcsAnalyze = canvas->GetStroke(analyzeStroke);
canvas->DrawPoint(p, hcsAnalyze);
}
canvas->DrawPoint(p, hcsPoint);
return;
}
case Type::NORMAL_N_COPY:
case Type::NORMAL_N_ROT:
case Type::NORMAL_N_ROT_AA:
case Type::NORMAL_IN_3D:
case Type::NORMAL_IN_2D: {
const Camera &camera = canvas->GetCamera();
if(how == DrawAs::HIDDEN) return;
for(int i = 0; i < 2; i++) {
bool asReference = (i == 1);
if(asReference) {
if(!h.request().IsFromReferences()) continue;
} else {
if(!SK.GetGroup(group)->IsVisible() || !SS.GW.showNormals) continue;
}
stroke.layer = (asReference) ? Canvas::Layer::FRONT : Canvas::Layer::NORMAL;
if(how != DrawAs::HOVERED && how != DrawAs::SELECTED) {
// Always draw the x, y, and z axes in red, green, and blue;
// brighter for the ones at the bottom left of the screen,
// dimmer for the ones at the model origin.
hRequest hr = h.request();
uint8_t luma = (asReference) ? 255 : 100;
if(hr == Request::HREQUEST_REFERENCE_XY) {
stroke.color = RgbaColor::From(0, 0, luma);
} else if(hr == Request::HREQUEST_REFERENCE_YZ) {
stroke.color = RgbaColor::From(luma, 0, 0);
} else if(hr == Request::HREQUEST_REFERENCE_ZX) {
stroke.color = RgbaColor::From(0, luma, 0);
}
}
Quaternion q = NormalGetNum();
Vector tail;
if(asReference) {
// Draw an extra copy of the x, y, and z axes, that's
// always in the corner of the view and at the front.
// So those are always available, perhaps useful.
stroke.width = 2;
double s = camera.scale;
double h = 60 - camera.height / 2.0;
double w = 60 - camera.width / 2.0;
// Shift the axis to the right if they would overlap with the toolbar.
if(SS.showToolbar) {
if(h + 30 > -(32*18 + 3*16 + 8) / 2)
w += 60;
}
tail = camera.projRight.ScaledBy(w/s).Plus(
camera.projUp. ScaledBy(h/s)).Minus(camera.offset);
} else {
tail = SK.GetEntity(point[0])->PointGetDrawNum();
}
tail = camera.AlignToPixelGrid(tail);
hcs = canvas->GetStroke(stroke);
Vector v = (q.RotationN()).WithMagnitude(50.0 / camera.scale);
Vector tip = tail.Plus(v);
canvas->DrawLine(tail, tip, hcs);
v = v.WithMagnitude(12.0 / camera.scale);
Vector axis = q.RotationV();
canvas->DrawLine(tip, tip.Minus(v.RotatedAbout(axis, 0.6)), hcs);
canvas->DrawLine(tip, tip.Minus(v.RotatedAbout(axis, -0.6)), hcs);
if(type == Type::NORMAL_IN_3D) {
Param *nw = SK.GetParam(param[0]),
*nx = SK.GetParam(param[1]),
*ny = SK.GetParam(param[2]),
*nz = SK.GetParam(param[3]);
if(nw->free || nx->free || ny->free || nz->free) {
Canvas::Stroke analyzeStroke = Style::Stroke(Style::ANALYZE);
analyzeStroke.layer = Canvas::Layer::FRONT;
Canvas::hStroke hcsAnalyze = canvas->GetStroke(analyzeStroke);
canvas->DrawLine(tail, tip, hcsAnalyze);
}
}
}
return;
}
case Type::DISTANCE:
case Type::DISTANCE_N_COPY:
// These are used only as data structures, nothing to display.
return;
case Type::WORKPLANE: {
const Camera &camera = canvas->GetCamera();
Vector p = SK.GetEntity(point[0])->PointGetNum();
p = camera.AlignToPixelGrid(p);
Vector u = Normal()->NormalU();
Vector v = Normal()->NormalV();
double s = (std::min(camera.width, camera.height)) * 0.45 / camera.scale;
Vector us = u.ScaledBy(s);
Vector vs = v.ScaledBy(s);
Vector pp = p.Plus (us).Plus (vs);
Vector pm = p.Plus (us).Minus(vs);
Vector mm = p.Minus(us).Minus(vs), mm2 = mm;
Vector mp = p.Minus(us).Plus (vs);
Canvas::Stroke strokeBorder = stroke;
strokeBorder.zIndex -= 3;
strokeBorder.stipplePattern = StipplePattern::SHORT_DASH;
strokeBorder.stippleScale = 8.0;
Canvas::hStroke hcsBorder = canvas->GetStroke(strokeBorder);
double textHeight = Style::TextHeight(hs) / camera.scale;
if(!h.isFromRequest()) {
mm = mm.Plus(v.ScaledBy(textHeight * 4.7));
mm2 = mm2.Plus(u.ScaledBy(textHeight * 4.7));
canvas->DrawLine(mm2, mm, hcsBorder);
}
canvas->DrawLine(pp, pm, hcsBorder);
canvas->DrawLine(mm2, pm, hcsBorder);
canvas->DrawLine(mm, mp, hcsBorder);
canvas->DrawLine(pp, mp, hcsBorder);
Vector o = mm2.Plus(u.ScaledBy(3.0 / camera.scale)).Plus(
v.ScaledBy(3.0 / camera.scale));
std::string shortDesc = DescriptionString().substr(5);
canvas->DrawVectorText(shortDesc, textHeight, o, u, v, hcs);
return;
}
case Type::LINE_SEGMENT:
case Type::CIRCLE:
case Type::ARC_OF_CIRCLE:
case Type::CUBIC:
case Type::CUBIC_PERIODIC:
case Type::TTF_TEXT: {
// Generate the rational polynomial curves, then piecewise linearize
// them, and display those.
// Calculating the draw offset, if necessary.
const bool shouldExplode = ShouldDrawExploded();
Vector explodeOffset;
SBezierList offsetBeziers = {};
SBezierList *beziers = GetOrGenerateBezierCurves();
if(shouldExplode) {
explodeOffset = ExplodeOffset();
for(const SBezier& b : beziers->l) {
SBezier offset = b.TransformedBy(explodeOffset, Quaternion::IDENTITY, 1.0);
offsetBeziers.l.Add(&offset);
}
beziers = &offsetBeziers;
}
SEdgeList *edges = nullptr;
SEdgeList offsetEdges = {};
if(!canvas->DrawBeziers(*beziers, hcs)) {
edges = GetOrGenerateEdges();
if(shouldExplode) {
for(const SEdge &e : edges->l) {
offsetEdges.AddEdge(e.a.Plus(explodeOffset), e.b.Plus(explodeOffset), e.auxA, e.auxB, e.tag);
}
edges = &offsetEdges;
}
canvas->DrawEdges(*edges, hcs);
}
if(type == Type::CIRCLE) {
Entity *dist = SK.GetEntity(distance);
if(dist->type == Type::DISTANCE) {
Param *p = SK.GetParam(dist->param[0]);
if(p->free) {
Canvas::Stroke analyzeStroke = Style::Stroke(Style::ANALYZE);
analyzeStroke.layer = Canvas::Layer::FRONT;
Canvas::hStroke hcsAnalyze = canvas->GetStroke(analyzeStroke);
if(!canvas->DrawBeziers(*beziers, hcsAnalyze)) {
canvas->DrawEdges(*edges, hcsAnalyze);
}
}
}
}
offsetBeziers.Clear();
offsetEdges.Clear();
return;
}
case Type::IMAGE: {
Canvas::Fill fill = {};
std::shared_ptr<Pixmap> pixmap;
switch(how) {
case DrawAs::HIDDEN: return;
case DrawAs::HOVERED: {
fill.color = Style::Color(Style::HOVERED).WithAlpha(180);
fill.pattern = Canvas::FillPattern::CHECKERED_A;
fill.zIndex = 2;
break;
}
case DrawAs::SELECTED: {
fill.color = Style::Color(Style::SELECTED).WithAlpha(180);
fill.pattern = Canvas::FillPattern::CHECKERED_B;
fill.zIndex = 1;
break;
}
default:
fill.color = RgbaColor::FromFloat(1.0f, 1.0f, 1.0f);
pixmap = SS.images[file];
break;
}
Canvas::hFill hf = canvas->GetFill(fill);
Vector v[4] = {};
for(int i = 0; i < 4; i++) {
v[i] = SK.GetEntity(point[i])->PointGetDrawNum();
}
Vector iu = v[3].Minus(v[0]);
Vector iv = v[1].Minus(v[0]);
if(how == DrawAs::DEFAULT && pixmap == NULL) {
Canvas::Stroke stroke = Style::Stroke(Style::DRAW_ERROR);
stroke.color = stroke.color.WithAlpha(50);
Canvas::hStroke hs = canvas->GetStroke(stroke);
canvas->DrawLine(v[0], v[2], hs);
canvas->DrawLine(v[1], v[3], hs);
for(int i = 0; i < 4; i++) {
canvas->DrawLine(v[i], v[(i + 1) % 4], hs);
}
} else {
canvas->DrawPixmap(pixmap, v[0], iu, iv,
Point2d::From(0.0, 0.0), Point2d::From(1.0, 1.0), hf);
}
}
case Type::FACE_NORMAL_PT:
case Type::FACE_XPROD:
case Type::FACE_N_ROT_TRANS:
case Type::FACE_N_TRANS:
case Type::FACE_N_ROT_AA:
case Type::FACE_ROT_NORMAL_PT:
case Type::FACE_N_ROT_AXIS_TRANS:
// Do nothing; these are drawn with the triangle mesh
return;
}
ssassert(false, "Unexpected entity type");
}