1160 lines
31 KiB
C++
1160 lines
31 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Utility functions, mostly various kinds of vector math (working on real
|
|
// numbers, not working on quantities in the symbolic algebra system).
|
|
//
|
|
// Copyright 2008-2013 Jonathan Westhues.
|
|
//-----------------------------------------------------------------------------
|
|
#include "solvespace.h"
|
|
|
|
void SolveSpace::AssertFailure(const char *file, unsigned line, const char *function,
|
|
const char *condition, const char *message) {
|
|
std::string formattedMsg;
|
|
formattedMsg += ssprintf("File %s, line %u, function %s:\n", file, line, function);
|
|
formattedMsg += ssprintf("Assertion failed: %s.\n", condition);
|
|
formattedMsg += ssprintf("Message: %s.\n", message);
|
|
SolveSpace::Platform::FatalError(formattedMsg);
|
|
}
|
|
|
|
std::string SolveSpace::ssprintf(const char *fmt, ...)
|
|
{
|
|
va_list va;
|
|
|
|
va_start(va, fmt);
|
|
int size = vsnprintf(NULL, 0, fmt, va);
|
|
ssassert(size >= 0, "vsnprintf could not encode string");
|
|
va_end(va);
|
|
|
|
std::string result;
|
|
result.resize(size + 1);
|
|
|
|
va_start(va, fmt);
|
|
vsnprintf(&result[0], size + 1, fmt, va);
|
|
va_end(va);
|
|
|
|
result.resize(size);
|
|
return result;
|
|
}
|
|
|
|
char32_t utf8_iterator::operator*()
|
|
{
|
|
const uint8_t *it = (const uint8_t*) this->p;
|
|
char32_t result = *it;
|
|
|
|
if((result & 0x80) != 0) {
|
|
unsigned int mask = 0x40;
|
|
|
|
do {
|
|
result <<= 6;
|
|
unsigned int c = (*++it);
|
|
mask <<= 5;
|
|
result += c - 0x80;
|
|
} while((result & mask) != 0);
|
|
|
|
result &= mask - 1;
|
|
}
|
|
|
|
this->n = (const char*) (it + 1);
|
|
return result;
|
|
}
|
|
|
|
int64_t SolveSpace::GetMilliseconds()
|
|
{
|
|
auto timestamp = std::chrono::steady_clock::now().time_since_epoch();
|
|
return std::chrono::duration_cast<std::chrono::milliseconds>(timestamp).count();
|
|
}
|
|
|
|
void SolveSpace::MakeMatrix(double *mat,
|
|
double a11, double a12, double a13, double a14,
|
|
double a21, double a22, double a23, double a24,
|
|
double a31, double a32, double a33, double a34,
|
|
double a41, double a42, double a43, double a44)
|
|
{
|
|
mat[ 0] = a11;
|
|
mat[ 1] = a21;
|
|
mat[ 2] = a31;
|
|
mat[ 3] = a41;
|
|
mat[ 4] = a12;
|
|
mat[ 5] = a22;
|
|
mat[ 6] = a32;
|
|
mat[ 7] = a42;
|
|
mat[ 8] = a13;
|
|
mat[ 9] = a23;
|
|
mat[10] = a33;
|
|
mat[11] = a43;
|
|
mat[12] = a14;
|
|
mat[13] = a24;
|
|
mat[14] = a34;
|
|
mat[15] = a44;
|
|
}
|
|
|
|
void SolveSpace::MultMatrix(double *mata, double *matb, double *matr) {
|
|
for(int i = 0; i < 4; i++) {
|
|
for(int j = 0; j < 4; j++) {
|
|
double s = 0.0;
|
|
for(int k = 0; k < 4; k++) {
|
|
s += mata[k * 4 + j] * matb[i * 4 + k];
|
|
}
|
|
matr[i * 4 + j] = s;
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Format the string for our message box appropriately, and then display
|
|
// that string.
|
|
//-----------------------------------------------------------------------------
|
|
static void MessageBox(const char *fmt, va_list va, bool error,
|
|
std::function<void()> onDismiss = std::function<void()>())
|
|
{
|
|
#ifndef LIBRARY
|
|
va_list va_size;
|
|
va_copy(va_size, va);
|
|
int size = vsnprintf(NULL, 0, fmt, va_size);
|
|
ssassert(size >= 0, "vsnprintf could not encode string");
|
|
va_end(va_size);
|
|
|
|
std::string text;
|
|
text.resize(size);
|
|
|
|
vsnprintf(&text[0], size + 1, fmt, va);
|
|
|
|
// Split message text using a heuristic for better presentation.
|
|
size_t separatorAt = 0;
|
|
while(separatorAt != std::string::npos) {
|
|
size_t dotAt = text.find('.', separatorAt + 1),
|
|
colonAt = text.find(':', separatorAt + 1);
|
|
separatorAt = min(dotAt, colonAt);
|
|
if(separatorAt == std::string::npos ||
|
|
(separatorAt + 1 < text.size() && isspace(text[separatorAt + 1]))) {
|
|
break;
|
|
}
|
|
}
|
|
std::string message = text;
|
|
std::string description;
|
|
if(separatorAt != std::string::npos) {
|
|
message = text.substr(0, separatorAt + 1);
|
|
if(separatorAt + 1 < text.size()) {
|
|
description = text.substr(separatorAt + 1);
|
|
}
|
|
}
|
|
|
|
std::string::iterator it = description.begin();
|
|
while(isspace(*it)) it++;
|
|
description = description.substr(it - description.begin());
|
|
|
|
Platform::MessageDialogRef dialog = CreateMessageDialog(SS.GW.window);
|
|
if (!dialog) {
|
|
if (error) {
|
|
fprintf(stderr, "Error: %s\n", message.c_str());
|
|
} else {
|
|
fprintf(stderr, "Message: %s\n", message.c_str());
|
|
}
|
|
if(onDismiss) {
|
|
onDismiss();
|
|
}
|
|
return;
|
|
}
|
|
using Platform::MessageDialog;
|
|
if(error) {
|
|
dialog->SetType(MessageDialog::Type::ERROR);
|
|
} else {
|
|
dialog->SetType(MessageDialog::Type::INFORMATION);
|
|
}
|
|
dialog->SetTitle(error ? C_("title", "Error") : C_("title", "Message"));
|
|
dialog->SetMessage(message);
|
|
if(!description.empty()) {
|
|
dialog->SetDescription(description);
|
|
}
|
|
dialog->AddButton(C_("button", "&OK"), MessageDialog::Response::OK,
|
|
/*isDefault=*/true);
|
|
|
|
dialog->onResponse = [=](MessageDialog::Response _response) {
|
|
if(onDismiss) {
|
|
onDismiss();
|
|
}
|
|
};
|
|
dialog->ShowModal();
|
|
#endif
|
|
}
|
|
void SolveSpace::Error(const char *fmt, ...)
|
|
{
|
|
va_list f;
|
|
va_start(f, fmt);
|
|
MessageBox(fmt, f, /*error=*/true);
|
|
va_end(f);
|
|
}
|
|
void SolveSpace::Message(const char *fmt, ...)
|
|
{
|
|
va_list f;
|
|
va_start(f, fmt);
|
|
MessageBox(fmt, f, /*error=*/false);
|
|
va_end(f);
|
|
}
|
|
void SolveSpace::MessageAndRun(std::function<void()> onDismiss, const char *fmt, ...)
|
|
{
|
|
va_list f;
|
|
va_start(f, fmt);
|
|
MessageBox(fmt, f, /*error=*/false, onDismiss);
|
|
va_end(f);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Solve a mostly banded matrix. In a given row, there are LEFT_OF_DIAG
|
|
// elements to the left of the diagonal element, and RIGHT_OF_DIAG elements to
|
|
// the right (so that the total band width is LEFT_OF_DIAG + RIGHT_OF_DIAG + 1).
|
|
// There also may be elements in the last two columns of any row. We solve
|
|
// without pivoting.
|
|
//-----------------------------------------------------------------------------
|
|
void BandedMatrix::Solve() {
|
|
int i, ip, j, jp;
|
|
double temp;
|
|
|
|
// Reduce the matrix to upper triangular form.
|
|
for(i = 0; i < n; i++) {
|
|
for(ip = i+1; ip < n && ip <= (i + LEFT_OF_DIAG); ip++) {
|
|
temp = A[ip][i]/A[i][i];
|
|
|
|
for(jp = i; jp < (n - 2) && jp <= (i + RIGHT_OF_DIAG); jp++) {
|
|
A[ip][jp] -= temp*(A[i][jp]);
|
|
}
|
|
A[ip][n-2] -= temp*(A[i][n-2]);
|
|
A[ip][n-1] -= temp*(A[i][n-1]);
|
|
|
|
B[ip] -= temp*B[i];
|
|
}
|
|
}
|
|
|
|
// And back-substitute.
|
|
for(i = n - 1; i >= 0; i--) {
|
|
temp = B[i];
|
|
|
|
if(i < n-1) temp -= X[n-1]*A[i][n-1];
|
|
if(i < n-2) temp -= X[n-2]*A[i][n-2];
|
|
|
|
for(j = min(n - 3, i + RIGHT_OF_DIAG); j > i; j--) {
|
|
temp -= X[j]*A[i][j];
|
|
}
|
|
X[i] = temp / A[i][i];
|
|
}
|
|
}
|
|
|
|
const Quaternion Quaternion::IDENTITY = { 1, 0, 0, 0 };
|
|
|
|
Quaternion Quaternion::From(double w, double vx, double vy, double vz) {
|
|
Quaternion q;
|
|
q.w = w;
|
|
q.vx = vx;
|
|
q.vy = vy;
|
|
q.vz = vz;
|
|
return q;
|
|
}
|
|
|
|
Quaternion Quaternion::From(hParam w, hParam vx, hParam vy, hParam vz) {
|
|
Quaternion q;
|
|
q.w = SK.GetParam(w )->val;
|
|
q.vx = SK.GetParam(vx)->val;
|
|
q.vy = SK.GetParam(vy)->val;
|
|
q.vz = SK.GetParam(vz)->val;
|
|
return q;
|
|
}
|
|
|
|
Quaternion Quaternion::From(Vector axis, double dtheta) {
|
|
Quaternion q;
|
|
double c = cos(dtheta / 2), s = sin(dtheta / 2);
|
|
axis = axis.WithMagnitude(s);
|
|
q.w = c;
|
|
q.vx = axis.x;
|
|
q.vy = axis.y;
|
|
q.vz = axis.z;
|
|
return q;
|
|
}
|
|
|
|
Quaternion Quaternion::From(Vector u, Vector v)
|
|
{
|
|
Vector n = u.Cross(v);
|
|
|
|
Quaternion q;
|
|
double s, tr = 1 + u.x + v.y + n.z;
|
|
if(tr > 1e-4) {
|
|
s = 2*sqrt(tr);
|
|
q.w = s/4;
|
|
q.vx = (v.z - n.y)/s;
|
|
q.vy = (n.x - u.z)/s;
|
|
q.vz = (u.y - v.x)/s;
|
|
} else {
|
|
if(u.x > v.y && u.x > n.z) {
|
|
s = 2*sqrt(1 + u.x - v.y - n.z);
|
|
q.w = (v.z - n.y)/s;
|
|
q.vx = s/4;
|
|
q.vy = (u.y + v.x)/s;
|
|
q.vz = (n.x + u.z)/s;
|
|
} else if(v.y > n.z) {
|
|
s = 2*sqrt(1 - u.x + v.y - n.z);
|
|
q.w = (n.x - u.z)/s;
|
|
q.vx = (u.y + v.x)/s;
|
|
q.vy = s/4;
|
|
q.vz = (v.z + n.y)/s;
|
|
} else {
|
|
s = 2*sqrt(1 - u.x - v.y + n.z);
|
|
q.w = (u.y - v.x)/s;
|
|
q.vx = (n.x + u.z)/s;
|
|
q.vy = (v.z + n.y)/s;
|
|
q.vz = s/4;
|
|
}
|
|
}
|
|
|
|
return q.WithMagnitude(1);
|
|
}
|
|
|
|
Quaternion Quaternion::Plus(Quaternion b) const {
|
|
Quaternion q;
|
|
q.w = w + b.w;
|
|
q.vx = vx + b.vx;
|
|
q.vy = vy + b.vy;
|
|
q.vz = vz + b.vz;
|
|
return q;
|
|
}
|
|
|
|
Quaternion Quaternion::Minus(Quaternion b) const {
|
|
Quaternion q;
|
|
q.w = w - b.w;
|
|
q.vx = vx - b.vx;
|
|
q.vy = vy - b.vy;
|
|
q.vz = vz - b.vz;
|
|
return q;
|
|
}
|
|
|
|
Quaternion Quaternion::ScaledBy(double s) const {
|
|
Quaternion q;
|
|
q.w = w*s;
|
|
q.vx = vx*s;
|
|
q.vy = vy*s;
|
|
q.vz = vz*s;
|
|
return q;
|
|
}
|
|
|
|
double Quaternion::Magnitude() const {
|
|
return sqrt(w*w + vx*vx + vy*vy + vz*vz);
|
|
}
|
|
|
|
Quaternion Quaternion::WithMagnitude(double s) const {
|
|
return ScaledBy(s/Magnitude());
|
|
}
|
|
|
|
Vector Quaternion::RotationU() const {
|
|
Vector v;
|
|
v.x = w*w + vx*vx - vy*vy - vz*vz;
|
|
v.y = 2*w *vz + 2*vx*vy;
|
|
v.z = 2*vx*vz - 2*w *vy;
|
|
return v;
|
|
}
|
|
|
|
Vector Quaternion::RotationV() const {
|
|
Vector v;
|
|
v.x = 2*vx*vy - 2*w*vz;
|
|
v.y = w*w - vx*vx + vy*vy - vz*vz;
|
|
v.z = 2*w*vx + 2*vy*vz;
|
|
return v;
|
|
}
|
|
|
|
Vector Quaternion::RotationN() const {
|
|
Vector v;
|
|
v.x = 2*w*vy + 2*vx*vz;
|
|
v.y = 2*vy*vz - 2*w*vx;
|
|
v.z = w*w - vx*vx - vy*vy + vz*vz;
|
|
return v;
|
|
}
|
|
|
|
Vector Quaternion::Rotate(Vector p) const {
|
|
// Express the point in the new basis
|
|
return (RotationU().ScaledBy(p.x)).Plus(
|
|
RotationV().ScaledBy(p.y)).Plus(
|
|
RotationN().ScaledBy(p.z));
|
|
}
|
|
|
|
Quaternion Quaternion::Inverse() const {
|
|
Quaternion r;
|
|
r.w = w;
|
|
r.vx = -vx;
|
|
r.vy = -vy;
|
|
r.vz = -vz;
|
|
return r.WithMagnitude(1); // not that the normalize should be reqd
|
|
}
|
|
|
|
Quaternion Quaternion::ToThe(double p) const {
|
|
// Avoid division by zero, or arccos of something not in its domain
|
|
if(w >= (1 - 1e-6)) {
|
|
return From(1, 0, 0, 0);
|
|
} else if(w <= (-1 + 1e-6)) {
|
|
return From(-1, 0, 0, 0);
|
|
}
|
|
|
|
Quaternion r;
|
|
Vector axis = Vector::From(vx, vy, vz);
|
|
double theta = acos(w); // okay, since magnitude is 1, so -1 <= w <= 1
|
|
theta *= p;
|
|
r.w = cos(theta);
|
|
axis = axis.WithMagnitude(sin(theta));
|
|
r.vx = axis.x;
|
|
r.vy = axis.y;
|
|
r.vz = axis.z;
|
|
return r;
|
|
}
|
|
|
|
Quaternion Quaternion::Times(Quaternion b) const {
|
|
double sa = w, sb = b.w;
|
|
Vector va = { vx, vy, vz };
|
|
Vector vb = { b.vx, b.vy, b.vz };
|
|
|
|
Quaternion r;
|
|
r.w = sa*sb - va.Dot(vb);
|
|
Vector vr = vb.ScaledBy(sa).Plus(
|
|
va.ScaledBy(sb).Plus(
|
|
va.Cross(vb)));
|
|
r.vx = vr.x;
|
|
r.vy = vr.y;
|
|
r.vz = vr.z;
|
|
return r;
|
|
}
|
|
|
|
Quaternion Quaternion::Mirror() const {
|
|
Vector u = RotationU(),
|
|
v = RotationV();
|
|
u = u.ScaledBy(-1);
|
|
v = v.ScaledBy(-1);
|
|
return Quaternion::From(u, v);
|
|
}
|
|
|
|
|
|
Vector Vector::From(double x, double y, double z) {
|
|
Vector v;
|
|
v.x = x; v.y = y; v.z = z;
|
|
return v;
|
|
}
|
|
|
|
Vector Vector::From(hParam x, hParam y, hParam z) {
|
|
Vector v;
|
|
v.x = SK.GetParam(x)->val;
|
|
v.y = SK.GetParam(y)->val;
|
|
v.z = SK.GetParam(z)->val;
|
|
return v;
|
|
}
|
|
|
|
bool Vector::EqualsExactly(Vector v) const {
|
|
return EXACT(x == v.x &&
|
|
y == v.y &&
|
|
z == v.z);
|
|
}
|
|
|
|
Vector Vector::Plus(Vector b) const {
|
|
Vector r;
|
|
|
|
r.x = x + b.x;
|
|
r.y = y + b.y;
|
|
r.z = z + b.z;
|
|
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::Minus(Vector b) const {
|
|
Vector r;
|
|
|
|
r.x = x - b.x;
|
|
r.y = y - b.y;
|
|
r.z = z - b.z;
|
|
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::Negated() const {
|
|
Vector r;
|
|
|
|
r.x = -x;
|
|
r.y = -y;
|
|
r.z = -z;
|
|
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::Cross(Vector b) const {
|
|
Vector r;
|
|
|
|
r.x = -(z*b.y) + (y*b.z);
|
|
r.y = (z*b.x) - (x*b.z);
|
|
r.z = -(y*b.x) + (x*b.y);
|
|
|
|
return r;
|
|
}
|
|
|
|
double Vector::Dot(Vector b) const {
|
|
return (x*b.x + y*b.y + z*b.z);
|
|
}
|
|
|
|
double Vector::DirectionCosineWith(Vector b) const {
|
|
Vector a = this->WithMagnitude(1);
|
|
b = b.WithMagnitude(1);
|
|
return a.Dot(b);
|
|
}
|
|
|
|
Vector Vector::Normal(int which) const {
|
|
Vector n;
|
|
|
|
// Arbitrarily choose one vector that's normal to us, pivoting
|
|
// appropriately.
|
|
double xa = fabs(x), ya = fabs(y), za = fabs(z);
|
|
if(this->Equals(Vector::From(0, 0, 1))) {
|
|
// Make DXFs exported in the XY plane work nicely...
|
|
n = Vector::From(1, 0, 0);
|
|
} else if(xa < ya && xa < za) {
|
|
n.x = 0;
|
|
n.y = z;
|
|
n.z = -y;
|
|
} else if(ya < za) {
|
|
n.x = -z;
|
|
n.y = 0;
|
|
n.z = x;
|
|
} else {
|
|
n.x = y;
|
|
n.y = -x;
|
|
n.z = 0;
|
|
}
|
|
|
|
if(which == 0) {
|
|
// That's the vector we return.
|
|
} else if(which == 1) {
|
|
n = this->Cross(n);
|
|
} else ssassert(false, "Unexpected vector normal index");
|
|
|
|
n = n.WithMagnitude(1);
|
|
|
|
return n;
|
|
}
|
|
|
|
Vector Vector::RotatedAbout(Vector orig, Vector axis, double theta) const {
|
|
Vector r = this->Minus(orig);
|
|
r = r.RotatedAbout(axis, theta);
|
|
return r.Plus(orig);
|
|
}
|
|
|
|
Vector Vector::RotatedAbout(Vector axis, double theta) const {
|
|
double c = cos(theta);
|
|
double s = sin(theta);
|
|
|
|
axis = axis.WithMagnitude(1);
|
|
|
|
Vector r;
|
|
|
|
r.x = (x)*(c + (1 - c)*(axis.x)*(axis.x)) +
|
|
(y)*((1 - c)*(axis.x)*(axis.y) - s*(axis.z)) +
|
|
(z)*((1 - c)*(axis.x)*(axis.z) + s*(axis.y));
|
|
|
|
r.y = (x)*((1 - c)*(axis.y)*(axis.x) + s*(axis.z)) +
|
|
(y)*(c + (1 - c)*(axis.y)*(axis.y)) +
|
|
(z)*((1 - c)*(axis.y)*(axis.z) - s*(axis.x));
|
|
|
|
r.z = (x)*((1 - c)*(axis.z)*(axis.x) - s*(axis.y)) +
|
|
(y)*((1 - c)*(axis.z)*(axis.y) + s*(axis.x)) +
|
|
(z)*(c + (1 - c)*(axis.z)*(axis.z));
|
|
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::DotInToCsys(Vector u, Vector v, Vector n) const {
|
|
Vector r = {
|
|
this->Dot(u),
|
|
this->Dot(v),
|
|
this->Dot(n)
|
|
};
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::ScaleOutOfCsys(Vector u, Vector v, Vector n) const {
|
|
Vector r = u.ScaledBy(x).Plus(
|
|
v.ScaledBy(y).Plus(
|
|
n.ScaledBy(z)));
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::InPerspective(Vector u, Vector v, Vector n,
|
|
Vector origin, double cameraTan) const
|
|
{
|
|
Vector r = this->Minus(origin);
|
|
r = r.DotInToCsys(u, v, n);
|
|
// yes, minus; we are assuming a csys where u cross v equals n, backwards
|
|
// from the display stuff
|
|
double w = (1 - r.z*cameraTan);
|
|
r = r.ScaledBy(1/w);
|
|
|
|
return r;
|
|
}
|
|
|
|
double Vector::DistanceToLine(Vector p0, Vector dp) const {
|
|
double m = dp.Magnitude();
|
|
return ((this->Minus(p0)).Cross(dp)).Magnitude() / m;
|
|
}
|
|
|
|
double Vector::DistanceToPlane(Vector normal, Vector origin) const {
|
|
return this->Dot(normal) - origin.Dot(normal);
|
|
}
|
|
|
|
bool Vector::OnLineSegment(Vector a, Vector b, double tol) const {
|
|
if(this->Equals(a, tol) || this->Equals(b, tol)) return true;
|
|
|
|
Vector d = b.Minus(a);
|
|
|
|
double m = d.MagSquared();
|
|
double distsq = ((this->Minus(a)).Cross(d)).MagSquared() / m;
|
|
|
|
if(distsq >= tol*tol) return false;
|
|
|
|
double t = (this->Minus(a)).DivPivoting(d);
|
|
// On-endpoint already tested
|
|
if(t < 0 || t > 1) return false;
|
|
return true;
|
|
}
|
|
|
|
Vector Vector::ClosestPointOnLine(Vector p0, Vector dp) const {
|
|
dp = dp.WithMagnitude(1);
|
|
// this, p0, and (p0+dp) define a plane; the min distance is in
|
|
// that plane, so calculate its normal
|
|
Vector pn = (this->Minus(p0)).Cross(dp);
|
|
// The minimum distance line is in that plane, perpendicular
|
|
// to the line
|
|
Vector n = pn.Cross(dp);
|
|
|
|
// Calculate the actual distance
|
|
double d = (dp.Cross(p0.Minus(*this))).Magnitude();
|
|
return this->Plus(n.WithMagnitude(d));
|
|
}
|
|
|
|
double Vector::MagSquared() const {
|
|
return x*x + y*y + z*z;
|
|
}
|
|
|
|
double Vector::Magnitude() const {
|
|
return sqrt(x*x + y*y + z*z);
|
|
}
|
|
|
|
Vector Vector::ScaledBy(double v) const {
|
|
Vector r;
|
|
|
|
r.x = x * v;
|
|
r.y = y * v;
|
|
r.z = z * v;
|
|
|
|
return r;
|
|
}
|
|
|
|
Vector Vector::WithMagnitude(double v) const {
|
|
double m = Magnitude();
|
|
if(EXACT(m == 0)) {
|
|
// We can do a zero vector with zero magnitude, but not any other cases.
|
|
if(fabs(v) > 1e-100) {
|
|
dbp("Vector::WithMagnitude(%g) of zero vector!", v);
|
|
}
|
|
return From(0, 0, 0);
|
|
} else {
|
|
return ScaledBy(v/m);
|
|
}
|
|
}
|
|
|
|
Vector Vector::ProjectVectorInto(hEntity wrkpl) const {
|
|
EntityBase *w = SK.GetEntity(wrkpl);
|
|
Vector u = w->Normal()->NormalU();
|
|
Vector v = w->Normal()->NormalV();
|
|
|
|
double up = this->Dot(u);
|
|
double vp = this->Dot(v);
|
|
|
|
return (u.ScaledBy(up)).Plus(v.ScaledBy(vp));
|
|
}
|
|
|
|
Vector Vector::ProjectInto(hEntity wrkpl) const {
|
|
EntityBase *w = SK.GetEntity(wrkpl);
|
|
Vector p0 = w->WorkplaneGetOffset();
|
|
|
|
Vector f = this->Minus(p0);
|
|
|
|
return p0.Plus(f.ProjectVectorInto(wrkpl));
|
|
}
|
|
|
|
Point2d Vector::Project2d(Vector u, Vector v) const {
|
|
Point2d p;
|
|
p.x = this->Dot(u);
|
|
p.y = this->Dot(v);
|
|
return p;
|
|
}
|
|
|
|
Point2d Vector::ProjectXy() const {
|
|
Point2d p;
|
|
p.x = x;
|
|
p.y = y;
|
|
return p;
|
|
}
|
|
|
|
Vector4 Vector::Project4d() const {
|
|
return Vector4::From(1, x, y, z);
|
|
}
|
|
|
|
double Vector::DivPivoting(Vector delta) const {
|
|
double mx = fabs(delta.x), my = fabs(delta.y), mz = fabs(delta.z);
|
|
|
|
if(mx > my && mx > mz) {
|
|
return x/delta.x;
|
|
} else if(my > mz) {
|
|
return y/delta.y;
|
|
} else {
|
|
return z/delta.z;
|
|
}
|
|
}
|
|
|
|
Vector Vector::ClosestOrtho() const {
|
|
double mx = fabs(x), my = fabs(y), mz = fabs(z);
|
|
|
|
if(mx > my && mx > mz) {
|
|
return From((x > 0) ? 1 : -1, 0, 0);
|
|
} else if(my > mz) {
|
|
return From(0, (y > 0) ? 1 : -1, 0);
|
|
} else {
|
|
return From(0, 0, (z > 0) ? 1 : -1);
|
|
}
|
|
}
|
|
|
|
Vector Vector::ClampWithin(double minv, double maxv) const {
|
|
Vector ret = *this;
|
|
|
|
if(ret.x < minv) ret.x = minv;
|
|
if(ret.y < minv) ret.y = minv;
|
|
if(ret.z < minv) ret.z = minv;
|
|
|
|
if(ret.x > maxv) ret.x = maxv;
|
|
if(ret.y > maxv) ret.y = maxv;
|
|
if(ret.z > maxv) ret.z = maxv;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void Vector::MakeMaxMin(Vector *maxv, Vector *minv) const {
|
|
maxv->x = max(maxv->x, x);
|
|
maxv->y = max(maxv->y, y);
|
|
maxv->z = max(maxv->z, z);
|
|
|
|
minv->x = min(minv->x, x);
|
|
minv->y = min(minv->y, y);
|
|
minv->z = min(minv->z, z);
|
|
}
|
|
|
|
bool Vector::OutsideAndNotOn(Vector maxv, Vector minv) const {
|
|
return (x > maxv.x + LENGTH_EPS) || (x < minv.x - LENGTH_EPS) ||
|
|
(y > maxv.y + LENGTH_EPS) || (y < minv.y - LENGTH_EPS) ||
|
|
(z > maxv.z + LENGTH_EPS) || (z < minv.z - LENGTH_EPS);
|
|
}
|
|
|
|
bool Vector::BoundingBoxesDisjoint(Vector amax, Vector amin,
|
|
Vector bmax, Vector bmin)
|
|
{
|
|
int i;
|
|
for(i = 0; i < 3; i++) {
|
|
if(amax.Element(i) < bmin.Element(i) - LENGTH_EPS) return true;
|
|
if(amin.Element(i) > bmax.Element(i) + LENGTH_EPS) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Vector::BoundingBoxIntersectsLine(Vector amax, Vector amin,
|
|
Vector p0, Vector p1, bool asSegment)
|
|
{
|
|
Vector dp = p1.Minus(p0);
|
|
double lp = dp.Magnitude();
|
|
dp = dp.ScaledBy(1.0/lp);
|
|
|
|
int i, a;
|
|
for(i = 0; i < 3; i++) {
|
|
int j = WRAP(i+1, 3), k = WRAP(i+2, 3);
|
|
if(lp*fabs(dp.Element(i)) < LENGTH_EPS) continue; // parallel to plane
|
|
|
|
for(a = 0; a < 2; a++) {
|
|
double d = (a == 0) ? amax.Element(i) : amin.Element(i);
|
|
// n dot (p0 + t*dp) = d
|
|
// (n dot p0) + t * (n dot dp) = d
|
|
double t = (d - p0.Element(i)) / dp.Element(i);
|
|
Vector p = p0.Plus(dp.ScaledBy(t));
|
|
|
|
if(asSegment && (t < -LENGTH_EPS || t > (lp+LENGTH_EPS))) continue;
|
|
|
|
if(p.Element(j) > amax.Element(j) + LENGTH_EPS) continue;
|
|
if(p.Element(k) > amax.Element(k) + LENGTH_EPS) continue;
|
|
|
|
if(p.Element(j) < amin.Element(j) - LENGTH_EPS) continue;
|
|
if(p.Element(k) < amin.Element(k) - LENGTH_EPS) continue;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Vector Vector::AtIntersectionOfPlanes(Vector n1, double d1,
|
|
Vector n2, double d2)
|
|
{
|
|
double det = (n1.Dot(n1))*(n2.Dot(n2)) -
|
|
(n1.Dot(n2))*(n1.Dot(n2));
|
|
double c1 = (d1*n2.Dot(n2) - d2*n1.Dot(n2))/det;
|
|
double c2 = (d2*n1.Dot(n1) - d1*n1.Dot(n2))/det;
|
|
|
|
return (n1.ScaledBy(c1)).Plus(n2.ScaledBy(c2));
|
|
}
|
|
|
|
void Vector::ClosestPointBetweenLines(Vector a0, Vector da,
|
|
Vector b0, Vector db,
|
|
double *ta, double *tb)
|
|
{
|
|
// Make a semi-orthogonal coordinate system from those directions;
|
|
// note that dna and dnb need not be perpendicular.
|
|
Vector dn = da.Cross(db); // normal to both
|
|
Vector dna = dn.Cross(da); // normal to da
|
|
Vector dnb = dn.Cross(db); // normal to db
|
|
|
|
// At the intersection of the lines
|
|
// a0 + pa*da = b0 + pb*db (where pa, pb are scalar params)
|
|
// So dot this equation against dna and dnb to get two equations
|
|
// to solve for da and db
|
|
*tb = ((a0.Minus(b0)).Dot(dna))/(db.Dot(dna));
|
|
*ta = -((a0.Minus(b0)).Dot(dnb))/(da.Dot(dnb));
|
|
}
|
|
|
|
Vector Vector::AtIntersectionOfLines(Vector a0, Vector a1,
|
|
Vector b0, Vector b1,
|
|
bool *skew,
|
|
double *parama, double *paramb)
|
|
{
|
|
Vector da = a1.Minus(a0), db = b1.Minus(b0);
|
|
|
|
double pa, pb;
|
|
Vector::ClosestPointBetweenLines(a0, da, b0, db, &pa, &pb);
|
|
|
|
if(parama) *parama = pa;
|
|
if(paramb) *paramb = pb;
|
|
|
|
// And from either of those, we get the intersection point.
|
|
Vector pi = a0.Plus(da.ScaledBy(pa));
|
|
|
|
if(skew) {
|
|
// Check if the intersection points on each line are actually
|
|
// coincident...
|
|
if(pi.Equals(b0.Plus(db.ScaledBy(pb)))) {
|
|
*skew = false;
|
|
} else {
|
|
*skew = true;
|
|
}
|
|
}
|
|
return pi;
|
|
}
|
|
|
|
Vector Vector::AtIntersectionOfPlaneAndLine(Vector n, double d,
|
|
Vector p0, Vector p1,
|
|
bool *parallel)
|
|
{
|
|
Vector dp = p1.Minus(p0);
|
|
|
|
if(fabs(n.Dot(dp)) < LENGTH_EPS) {
|
|
if(parallel) *parallel = true;
|
|
return Vector::From(0, 0, 0);
|
|
}
|
|
|
|
if(parallel) *parallel = false;
|
|
|
|
// n dot (p0 + t*dp) = d
|
|
// (n dot p0) + t * (n dot dp) = d
|
|
double t = (d - n.Dot(p0)) / (n.Dot(dp));
|
|
|
|
return p0.Plus(dp.ScaledBy(t));
|
|
}
|
|
|
|
static double det2(double a1, double b1,
|
|
double a2, double b2)
|
|
{
|
|
return (a1*b2) - (b1*a2);
|
|
}
|
|
static double det3(double a1, double b1, double c1,
|
|
double a2, double b2, double c2,
|
|
double a3, double b3, double c3)
|
|
{
|
|
return a1*det2(b2, c2, b3, c3) -
|
|
b1*det2(a2, c2, a3, c3) +
|
|
c1*det2(a2, b2, a3, b3);
|
|
}
|
|
Vector Vector::AtIntersectionOfPlanes(Vector na, double da,
|
|
Vector nb, double db,
|
|
Vector nc, double dc,
|
|
bool *parallel)
|
|
{
|
|
double det = det3(na.x, na.y, na.z,
|
|
nb.x, nb.y, nb.z,
|
|
nc.x, nc.y, nc.z);
|
|
if(fabs(det) < 1e-10) { // arbitrary tolerance, not so good
|
|
*parallel = true;
|
|
return Vector::From(0, 0, 0);
|
|
}
|
|
*parallel = false;
|
|
|
|
double detx = det3(da, na.y, na.z,
|
|
db, nb.y, nb.z,
|
|
dc, nc.y, nc.z);
|
|
|
|
double dety = det3(na.x, da, na.z,
|
|
nb.x, db, nb.z,
|
|
nc.x, dc, nc.z);
|
|
|
|
double detz = det3(na.x, na.y, da,
|
|
nb.x, nb.y, db,
|
|
nc.x, nc.y, dc );
|
|
|
|
return Vector::From(detx/det, dety/det, detz/det);
|
|
}
|
|
|
|
size_t VectorHash::operator()(const Vector &v) const {
|
|
const size_t size = (size_t)pow(std::numeric_limits<size_t>::max(), 1.0 / 3.0) - 1;
|
|
const double eps = 4.0 * LENGTH_EPS;
|
|
|
|
double x = fabs(v.x) / eps;
|
|
double y = fabs(v.y) / eps;
|
|
double z = fabs(v.y) / eps;
|
|
|
|
size_t xs = size_t(fmod(x, (double)size));
|
|
size_t ys = size_t(fmod(y, (double)size));
|
|
size_t zs = size_t(fmod(z, (double)size));
|
|
|
|
return (zs * size + ys) * size + xs;
|
|
}
|
|
|
|
bool VectorPred::operator()(Vector a, Vector b) const {
|
|
return a.Equals(b, LENGTH_EPS);
|
|
}
|
|
|
|
Vector4 Vector4::From(double w, double x, double y, double z) {
|
|
Vector4 ret;
|
|
ret.w = w;
|
|
ret.x = x;
|
|
ret.y = y;
|
|
ret.z = z;
|
|
return ret;
|
|
}
|
|
|
|
Vector4 Vector4::From(double w, Vector v) {
|
|
return Vector4::From(w, w*v.x, w*v.y, w*v.z);
|
|
}
|
|
|
|
Vector4 Vector4::Blend(Vector4 a, Vector4 b, double t) {
|
|
return (a.ScaledBy(1 - t)).Plus(b.ScaledBy(t));
|
|
}
|
|
|
|
Vector4 Vector4::Plus(Vector4 b) const {
|
|
return Vector4::From(w + b.w, x + b.x, y + b.y, z + b.z);
|
|
}
|
|
|
|
Vector4 Vector4::Minus(Vector4 b) const {
|
|
return Vector4::From(w - b.w, x - b.x, y - b.y, z - b.z);
|
|
}
|
|
|
|
Vector4 Vector4::ScaledBy(double s) const {
|
|
return Vector4::From(w*s, x*s, y*s, z*s);
|
|
}
|
|
|
|
Vector Vector4::PerspectiveProject() const {
|
|
return Vector::From(x / w, y / w, z / w);
|
|
}
|
|
|
|
Point2d Point2d::From(double x, double y) {
|
|
return { x, y };
|
|
}
|
|
|
|
Point2d Point2d::FromPolar(double r, double a) {
|
|
return { r * cos(a), r * sin(a) };
|
|
}
|
|
|
|
double Point2d::Angle() const {
|
|
double a = atan2(y, x);
|
|
return M_PI + remainder(a - M_PI, 2 * M_PI);
|
|
}
|
|
|
|
double Point2d::AngleTo(const Point2d &p) const {
|
|
return p.Minus(*this).Angle();
|
|
}
|
|
|
|
Point2d Point2d::Plus(const Point2d &b) const {
|
|
return { x + b.x, y + b.y };
|
|
}
|
|
|
|
Point2d Point2d::Minus(const Point2d &b) const {
|
|
return { x - b.x, y - b.y };
|
|
}
|
|
|
|
Point2d Point2d::ScaledBy(double s) const {
|
|
return { x * s, y * s };
|
|
}
|
|
|
|
double Point2d::DivPivoting(Point2d delta) const {
|
|
if(fabs(delta.x) > fabs(delta.y)) {
|
|
return x/delta.x;
|
|
} else {
|
|
return y/delta.y;
|
|
}
|
|
}
|
|
|
|
double Point2d::MagSquared() const {
|
|
return x*x + y*y;
|
|
}
|
|
|
|
double Point2d::Magnitude() const {
|
|
return sqrt(x*x + y*y);
|
|
}
|
|
|
|
Point2d Point2d::WithMagnitude(double v) const {
|
|
double m = Magnitude();
|
|
if(m < 1e-20) {
|
|
dbp("!!! WithMagnitude() of zero vector");
|
|
return { v, 0 };
|
|
}
|
|
return { x * v / m, y * v / m };
|
|
}
|
|
|
|
double Point2d::DistanceTo(const Point2d &p) const {
|
|
double dx = x - p.x;
|
|
double dy = y - p.y;
|
|
return sqrt(dx*dx + dy*dy);
|
|
}
|
|
|
|
double Point2d::Dot(Point2d p) const {
|
|
return x*p.x + y*p.y;
|
|
}
|
|
|
|
double Point2d::DistanceToLine(const Point2d &p0, const Point2d &dp, bool asSegment) const {
|
|
double m = dp.x*dp.x + dp.y*dp.y;
|
|
if(m < LENGTH_EPS*LENGTH_EPS) return VERY_POSITIVE;
|
|
|
|
// Let our line be p = p0 + t*dp, for a scalar t from 0 to 1
|
|
double t = (dp.x*(x - p0.x) + dp.y*(y - p0.y))/m;
|
|
|
|
if(asSegment) {
|
|
if(t < 0.0) return DistanceTo(p0);
|
|
if(t > 1.0) return DistanceTo(p0.Plus(dp));
|
|
}
|
|
Point2d closest = p0.Plus(dp.ScaledBy(t));
|
|
return DistanceTo(closest);
|
|
}
|
|
|
|
double Point2d::DistanceToLineSigned(const Point2d &p0, const Point2d &dp, bool asSegment) const {
|
|
double m = dp.x*dp.x + dp.y*dp.y;
|
|
if(m < LENGTH_EPS*LENGTH_EPS) return VERY_POSITIVE;
|
|
|
|
Point2d n = dp.Normal().WithMagnitude(1.0);
|
|
double dist = n.Dot(*this) - n.Dot(p0);
|
|
if(asSegment) {
|
|
// Let our line be p = p0 + t*dp, for a scalar t from 0 to 1
|
|
double t = (dp.x*(x - p0.x) + dp.y*(y - p0.y))/m;
|
|
double sign = (dist > 0.0) ? 1.0 : -1.0;
|
|
if(t < 0.0) return DistanceTo(p0) * sign;
|
|
if(t > 1.0) return DistanceTo(p0.Plus(dp)) * sign;
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
|
|
Point2d Point2d::Normal() const {
|
|
return { y, -x };
|
|
}
|
|
|
|
bool Point2d::Equals(Point2d v, double tol) const {
|
|
double dx = v.x - x; if(dx < -tol || dx > tol) return false;
|
|
double dy = v.y - y; if(dy < -tol || dy > tol) return false;
|
|
|
|
return (this->Minus(v)).MagSquared() < tol*tol;
|
|
}
|
|
|
|
BBox BBox::From(const Vector &p0, const Vector &p1) {
|
|
BBox bbox;
|
|
bbox.minp.x = min(p0.x, p1.x);
|
|
bbox.minp.y = min(p0.y, p1.y);
|
|
bbox.minp.z = min(p0.z, p1.z);
|
|
|
|
bbox.maxp.x = max(p0.x, p1.x);
|
|
bbox.maxp.y = max(p0.y, p1.y);
|
|
bbox.maxp.z = max(p0.z, p1.z);
|
|
return bbox;
|
|
}
|
|
|
|
Vector BBox::GetOrigin() const { return minp.Plus(maxp.Minus(minp).ScaledBy(0.5)); }
|
|
Vector BBox::GetExtents() const { return maxp.Minus(minp).ScaledBy(0.5); }
|
|
|
|
void BBox::Include(const Vector &v, double r) {
|
|
minp.x = min(minp.x, v.x - r);
|
|
minp.y = min(minp.y, v.y - r);
|
|
minp.z = min(minp.z, v.z - r);
|
|
|
|
maxp.x = max(maxp.x, v.x + r);
|
|
maxp.y = max(maxp.y, v.y + r);
|
|
maxp.z = max(maxp.z, v.z + r);
|
|
}
|
|
|
|
bool BBox::Overlaps(const BBox &b1) const {
|
|
Vector t = b1.GetOrigin().Minus(GetOrigin());
|
|
Vector e = b1.GetExtents().Plus(GetExtents());
|
|
|
|
return fabs(t.x) < e.x && fabs(t.y) < e.y && fabs(t.z) < e.z;
|
|
}
|
|
|
|
bool BBox::Contains(const Point2d &p, double r) const {
|
|
return p.x >= (minp.x - r) &&
|
|
p.y >= (minp.y - r) &&
|
|
p.x <= (maxp.x + r) &&
|
|
p.y <= (maxp.y + r);
|
|
}
|
|
|
|
const std::vector<double>& SolveSpace::StipplePatternDashes(StipplePattern pattern) {
|
|
static bool initialized;
|
|
static std::vector<double> dashes[(size_t)StipplePattern::LAST + 1];
|
|
if(!initialized) {
|
|
// Inkscape ignores all elements that are exactly zero instead of drawing
|
|
// them as dots, so set those to 1e-6.
|
|
dashes[(size_t)StipplePattern::CONTINUOUS] =
|
|
{};
|
|
dashes[(size_t)StipplePattern::SHORT_DASH] =
|
|
{ 1.0, 2.0 };
|
|
dashes[(size_t)StipplePattern::DASH] =
|
|
{ 1.0, 1.0 };
|
|
dashes[(size_t)StipplePattern::DASH_DOT] =
|
|
{ 1.0, 0.5, 1e-6, 0.5 };
|
|
dashes[(size_t)StipplePattern::DASH_DOT_DOT] =
|
|
{ 1.0, 0.5, 1e-6, 0.5, 1e-6, 0.5 };
|
|
dashes[(size_t)StipplePattern::DOT] =
|
|
{ 1e-6, 0.5 };
|
|
dashes[(size_t)StipplePattern::LONG_DASH] =
|
|
{ 2.0, 0.5 };
|
|
dashes[(size_t)StipplePattern::FREEHAND] =
|
|
{ 1.0, 2.0 };
|
|
dashes[(size_t)StipplePattern::ZIGZAG] =
|
|
{ 1.0, 2.0 };
|
|
}
|
|
|
|
return dashes[(size_t)pattern];
|
|
}
|
|
|
|
double SolveSpace::StipplePatternLength(StipplePattern pattern) {
|
|
static bool initialized;
|
|
static double lengths[(size_t)StipplePattern::LAST + 1];
|
|
if(!initialized) {
|
|
for(size_t i = 0; i < (size_t)StipplePattern::LAST; i++) {
|
|
const std::vector<double> &dashes = StipplePatternDashes((StipplePattern)i);
|
|
double length = 0.0;
|
|
for(double dash : dashes) {
|
|
length += dash;
|
|
}
|
|
lengths[i] = length;
|
|
}
|
|
}
|
|
|
|
return lengths[(size_t)pattern];
|
|
}
|