solvespace/srf/surface.h

421 lines
15 KiB
C++

//-----------------------------------------------------------------------------
// Functions relating to rational polynomial surfaces, which are trimmed by
// curves (either rational polynomial curves, or piecewise linear
// approximations to curves of intersection that can't be represented
// exactly in ratpoly form), and assembled into watertight shells.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#ifndef __SURFACE_H
#define __SURFACE_H
// Utility functions, Bernstein polynomials of order 1-3 and their derivatives.
double Bernstein(int k, int deg, double t);
double BernsteinDerivative(int k, int deg, double t);
class SSurface;
class SCurvePt;
// Utility data structure, a two-dimensional BSP to accelerate polygon
// operations.
class SBspUv {
public:
Point2d a, b;
SBspUv *pos;
SBspUv *neg;
SBspUv *more;
enum {
INSIDE = 100,
OUTSIDE = 200,
EDGE_PARALLEL = 300,
EDGE_ANTIPARALLEL = 400,
EDGE_OTHER = 500
};
static SBspUv *Alloc(void);
static SBspUv *From(SEdgeList *el, SSurface *srf);
void ScalePoints(Point2d *pt, Point2d *a, Point2d *b, SSurface *srf);
double ScaledSignedDistanceToLine(Point2d pt, Point2d a, Point2d b,
SSurface *srf);
double ScaledDistanceToLine(Point2d pt, Point2d a, Point2d b, bool seg,
SSurface *srf);
SBspUv *InsertEdge(Point2d a, Point2d b, SSurface *srf);
int ClassifyPoint(Point2d p, Point2d eb, SSurface *srf);
int ClassifyEdge(Point2d ea, Point2d eb, SSurface *srf);
double MinimumDistanceToEdge(Point2d p, SSurface *srf);
};
// Now the data structures to represent a shell of trimmed rational polynomial
// surfaces.
class SShell;
class hSSurface {
public:
uint32_t v;
};
class hSCurve {
public:
uint32_t v;
};
// Stuff for rational polynomial curves, of degree one to three. These are
// our inputs, and are also calculated for certain exact surface-surface
// intersections.
class SBezier {
public:
int tag;
int auxA, auxB;
int deg;
Vector ctrl[4];
double weight[4];
Vector PointAt(double t);
Vector TangentAt(double t);
void ClosestPointTo(Vector p, double *t, bool converge=true);
void SplitAt(double t, SBezier *bef, SBezier *aft);
bool PointOnThisAndCurve(SBezier *sbb, Vector *p);
Vector Start(void);
Vector Finish(void);
bool Equals(SBezier *b);
void MakePwlInto(SEdgeList *sel, double chordTol=0);
void MakePwlInto(List<SCurvePt> *l, double chordTol=0);
void MakePwlInto(SContour *sc, double chordTol=0);
void MakePwlInto(List<Vector> *l, double chordTol=0);
void MakePwlWorker(List<Vector> *l, double ta, double tb, double chordTol);
void AllIntersectionsWith(SBezier *sbb, SPointList *spl);
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
void Reverse(void);
bool IsInPlane(Vector n, double d);
bool IsCircle(Vector axis, Vector *center, double *r);
bool IsRational(void);
SBezier TransformedBy(Vector t, Quaternion q, double scale);
SBezier InPerspective(Vector u, Vector v, Vector n,
Vector origin, double cameraTan);
void ScaleSelfBy(double s);
static SBezier From(Vector p0, Vector p1, Vector p2, Vector p3);
static SBezier From(Vector p0, Vector p1, Vector p2);
static SBezier From(Vector p0, Vector p1);
static SBezier From(Vector4 p0, Vector4 p1, Vector4 p2, Vector4 p3);
static SBezier From(Vector4 p0, Vector4 p1, Vector4 p2);
static SBezier From(Vector4 p0, Vector4 p1);
};
class SBezierList {
public:
List<SBezier> l;
void Clear(void);
void ScaleSelfBy(double s);
void CullIdenticalBeziers(void);
void AllIntersectionsWith(SBezierList *sblb, SPointList *spl);
bool GetPlaneContainingBeziers(Vector *p, Vector *u, Vector *v,
Vector *notCoplanarAt);
};
class SBezierLoop {
public:
int tag;
List<SBezier> l;
inline void Clear(void) { l.Clear(); }
bool IsClosed(void);
void Reverse(void);
void MakePwlInto(SContour *sc, double chordTol=0);
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
static SBezierLoop FromCurves(SBezierList *spcl,
bool *allClosed, SEdge *errorAt);
};
class SBezierLoopSet {
public:
List<SBezierLoop> l;
Vector normal;
Vector point;
static SBezierLoopSet From(SBezierList *spcl, SPolygon *poly,
double chordTol,
bool *allClosed, SEdge *errorAt,
SBezierList *openContours);
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
void MakePwlInto(SPolygon *sp);
void Clear(void);
};
class SBezierLoopSetSet {
public:
List<SBezierLoopSet> l;
void FindOuterFacesFrom(SBezierList *sbl, SPolygon *spxyz, SSurface *srfuv,
double chordTol,
bool *allClosed, SEdge *notClosedAt,
bool *allCoplanar, Vector *notCoplanarAt,
SBezierList *openContours);
void AddOpenPath(SBezier *sb);
void Clear(void);
};
// Stuff for the surface trim curves: piecewise linear
class SCurvePt {
public:
int tag;
Vector p;
bool vertex;
};
class SCurve {
public:
hSCurve h;
// In a Boolean, C = A op B. The curves in A and B get copied into C, and
// therefore must get new hSCurves assigned. For the curves in A and B,
// we use newH to record their new handle in C.
hSCurve newH;
enum {
FROM_A = 100,
FROM_B = 200,
FROM_INTERSECTION = 300
};
int source;
bool isExact;
SBezier exact;
List<SCurvePt> pts;
hSSurface surfA;
hSSurface surfB;
static SCurve FromTransformationOf(SCurve *a, Vector t, Quaternion q,
double scale);
SCurve MakeCopySplitAgainst(SShell *agnstA, SShell *agnstB,
SSurface *srfA, SSurface *srfB);
void RemoveShortSegments(SSurface *srfA, SSurface *srfB);
SSurface *GetSurfaceA(SShell *a, SShell *b);
SSurface *GetSurfaceB(SShell *a, SShell *b);
void Clear(void);
};
// A segment of a curve by which a surface is trimmed: indicates which curve,
// by its handle, and the starting and ending points of our segment of it.
// The vector out points out of the surface; it, the surface outer normal,
// and a tangent to the beginning of the curve are all orthogonal.
class STrimBy {
public:
hSCurve curve;
bool backwards;
// If a trim runs backwards, then start and finish still correspond to
// the actual start and finish, but they appear in reverse order in
// the referenced curve.
Vector start;
Vector finish;
static STrimBy EntireCurve(SShell *shell, hSCurve hsc, bool bkwds);
};
// An intersection point between a line and a surface
class SInter {
public:
int tag;
Vector p;
SSurface *srf;
Point2d pinter;
Vector surfNormal; // of the intersecting surface, at pinter
bool onEdge; // pinter is on edge of trim poly
};
// A rational polynomial surface in Bezier form.
class SSurface {
public:
int tag;
hSSurface h;
// Same as newH for the curves; record what a surface gets renamed to
// when I copy things over.
hSSurface newH;
RgbColor color;
uint32_t face;
int degm, degn;
Vector ctrl[4][4];
double weight[4][4];
List<STrimBy> trim;
// For testing whether a point (u, v) on the surface lies inside the trim
SBspUv *bsp;
SEdgeList edges;
// For caching our initial (u, v) when doing Newton iterations to project
// a point into our surface.
Point2d cached;
static SSurface FromExtrusionOf(SBezier *spc, Vector t0, Vector t1);
static SSurface FromRevolutionOf(SBezier *sb, Vector pt, Vector axis,
double thetas, double thetaf);
static SSurface FromPlane(Vector pt, Vector u, Vector v);
static SSurface FromTransformationOf(SSurface *a, Vector t, Quaternion q,
double scale,
bool includingTrims);
void ScaleSelfBy(double s);
void EdgeNormalsWithinSurface(Point2d auv, Point2d buv,
Vector *pt, Vector *enin, Vector *enout,
Vector *surfn,
uint32_t auxA,
SShell *shell, SShell *sha, SShell *shb);
void FindChainAvoiding(SEdgeList *src, SEdgeList *dest, SPointList *avoid);
SSurface MakeCopyTrimAgainst(SShell *parent, SShell *a, SShell *b,
SShell *into, int type);
void TrimFromEdgeList(SEdgeList *el, bool asUv);
void IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
SShell *into);
void AddExactIntersectionCurve(SBezier *sb, SSurface *srfB,
SShell *agnstA, SShell *agnstB, SShell *into);
typedef struct {
int tag;
Point2d p;
} Inter;
void WeightControlPoints(void);
void UnWeightControlPoints(void);
void CopyRowOrCol(bool row, int this_ij, SSurface *src, int src_ij);
void BlendRowOrCol(bool row, int this_ij, SSurface *a, int a_ij,
SSurface *b, int b_ij);
double DepartureFromCoplanar(void);
void SplitInHalf(bool byU, SSurface *sa, SSurface *sb);
void AllPointsIntersecting(Vector a, Vector b,
List<SInter> *l,
bool seg, bool trimmed, bool inclTangent);
void AllPointsIntersectingUntrimmed(Vector a, Vector b,
int *cnt, int *level,
List<Inter> *l, bool segment,
SSurface *sorig);
void ClosestPointTo(Vector p, Point2d *puv, bool converge=true);
void ClosestPointTo(Vector p, double *u, double *v, bool converge=true);
bool ClosestPointNewton(Vector p, double *u, double *v, bool converge=true);
bool PointIntersectingLine(Vector p0, Vector p1, double *u, double *v);
Vector ClosestPointOnThisAndSurface(SSurface *srf2, Vector p);
void PointOnSurfaces(SSurface *s1, SSurface *s2, double *u, double *v);
Vector PointAt(double u, double v);
Vector PointAt(Point2d puv);
void TangentsAt(double u, double v, Vector *tu, Vector *tv);
Vector NormalAt(Point2d puv);
Vector NormalAt(double u, double v);
bool LineEntirelyOutsideBbox(Vector a, Vector b, bool segment);
void GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin);
bool CoincidentWithPlane(Vector n, double d);
bool CoincidentWith(SSurface *ss, bool sameNormal);
bool IsExtrusion(SBezier *of, Vector *along);
bool IsCylinder(Vector *axis, Vector *center, double *r,
Vector *start, Vector *finish);
void TriangulateInto(SShell *shell, SMesh *sm);
// these are intended as bitmasks, even though there's just one now
enum {
AS_UV = 0x01,
AS_XYZ = 0x00
};
void MakeTrimEdgesInto(SEdgeList *sel, int flags, SCurve *sc, STrimBy *stb);
void MakeEdgesInto(SShell *shell, SEdgeList *sel, int flags,
SShell *useCurvesFrom=NULL);
Vector ExactSurfaceTangentAt(Vector p, SSurface *srfA, SSurface *srfB,
Vector dir);
void MakeSectionEdgesInto(SShell *shell, SEdgeList *sel, SBezierList *sbl);
void MakeClassifyingBsp(SShell *shell, SShell *useCurvesFrom);
double ChordToleranceForEdge(Vector a, Vector b);
void MakeTriangulationGridInto(List<double> *l, double vs, double vf,
bool swapped);
Vector PointAtMaybeSwapped(double u, double v, bool swapped);
void Reverse(void);
void Clear(void);
};
class SShell {
public:
IdList<SCurve,hSCurve> curve;
IdList<SSurface,hSSurface> surface;
bool booleanFailed;
void MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1,
RgbColor color);
void MakeFromRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis,
RgbColor color);
void MakeFromUnionOf(SShell *a, SShell *b);
void MakeFromDifferenceOf(SShell *a, SShell *b);
enum {
AS_UNION = 10,
AS_DIFFERENCE = 11,
AS_INTERSECT = 12
};
void MakeFromBoolean(SShell *a, SShell *b, int type);
void CopyCurvesSplitAgainst(bool opA, SShell *agnst, SShell *into);
void CopySurfacesTrimAgainst(SShell *sha, SShell *shb, SShell *into,
int type);
void MakeIntersectionCurvesAgainst(SShell *against, SShell *into);
void MakeClassifyingBsps(SShell *useCurvesFrom);
void AllPointsIntersecting(Vector a, Vector b, List<SInter> *il,
bool seg, bool trimmed, bool inclTangent);
void MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal,
SEdgeList *el, SShell *useCurvesFrom);
void RewriteSurfaceHandlesForCurves(SShell *a, SShell *b);
void CleanupAfterBoolean(void);
// Definitions when classifying regions of a surface; it is either inside,
// outside, or coincident (with parallel or antiparallel normal) with a
// shell.
enum {
INSIDE = 100,
OUTSIDE = 200,
COINC_SAME = 300,
COINC_OPP = 400
};
static const double DOTP_TOL;
int ClassifyRegion(Vector edge_n, Vector inter_surf_n, Vector edge_surf_n);
bool ClassifyEdge(int *indir, int *outdir,
Vector ea, Vector eb,
Vector p,
Vector edge_n_in, Vector edge_n_out, Vector surf_n);
void MakeFromCopyOf(SShell *a);
void MakeFromTransformationOf(SShell *a,
Vector trans, Quaternion q, double scale);
void MakeFromAssemblyOf(SShell *a, SShell *b);
void MergeCoincidentSurfaces(void);
void TriangulateInto(SMesh *sm);
void MakeEdgesInto(SEdgeList *sel);
void MakeSectionEdgesInto(Vector n, double d,
SEdgeList *sel, SBezierList *sbl);
bool IsEmpty(void);
void RemapFaces(Group *g, int remap);
void Clear(void);
};
#endif