solvespace/srf/boolean.cpp

633 lines
20 KiB
C++

#include "solvespace.h"
static int I, N;
void SShell::MakeFromUnionOf(SShell *a, SShell *b) {
MakeFromBoolean(a, b, AS_UNION);
}
void SShell::MakeFromDifferenceOf(SShell *a, SShell *b) {
MakeFromBoolean(a, b, AS_DIFFERENCE);
}
static Vector LineStart, LineDirection;
static int ByTAlongLine(const void *av, const void *bv)
{
SInter *a = (SInter *)av,
*b = (SInter *)bv;
double ta = (a->p.Minus(LineStart)).DivPivoting(LineDirection),
tb = (b->p.Minus(LineStart)).DivPivoting(LineDirection);
return (ta > tb) ? 1 : -1;
}
SCurve SCurve::MakeCopySplitAgainst(SShell *agnstA, SShell *agnstB) {
SCurve ret;
ret = *this;
ret.interCurve = false;
ZERO(&(ret.pts));
Vector *p = pts.First();
if(!p) oops();
Vector prev = *p;
ret.pts.Add(p);
p = pts.NextAfter(p);
for(; p; p = pts.NextAfter(p)) {
List<SInter> il;
ZERO(&il);
// Find all the intersections with the two passed shells
if(agnstA) agnstA->AllPointsIntersecting(prev, *p, &il);
if(agnstB) agnstB->AllPointsIntersecting(prev, *p, &il);
// If any intersections exist, sort them in order along the
// line and add them to the curve.
if(il.n > 0) {
LineStart = prev;
LineDirection = p->Minus(prev);
qsort(il.elem, il.n, sizeof(il.elem[0]), ByTAlongLine);
Vector prev = Vector::From(VERY_POSITIVE, 0, 0);
SInter *pi;
for(pi = il.First(); pi; pi = il.NextAfter(pi)) {
// On-edge intersection will generate same split point for
// both surfaces, so don't create zero-length edge.
if(!prev.Equals(pi->p)) {
ret.pts.Add(&(pi->p));
}
prev = pi->p;
}
}
il.Clear();
ret.pts.Add(p);
prev = *p;
}
return ret;
}
void SShell::CopyCurvesSplitAgainst(SShell *aga, SShell *agb, SShell *into) {
SCurve *sc;
for(sc = curve.First(); sc; sc = curve.NextAfter(sc)) {
SCurve scn = sc->MakeCopySplitAgainst(aga, agb);
hSCurve hsc = into->curve.AddAndAssignId(&scn);
// And note the new ID so that we can rewrite the trims appropriately
sc->newH = hsc;
}
}
void SSurface::TrimFromEdgeList(SEdgeList *el) {
el->l.ClearTags();
STrimBy stb;
ZERO(&stb);
for(;;) {
// Find an edge, any edge; we'll start from there.
SEdge *se;
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
if(se->tag) continue;
break;
}
if(!se) break;
se->tag = 1;
stb.start = se->a;
stb.finish = se->b;
stb.curve.v = se->auxA;
stb.backwards = se->auxB ? true : false;
// Find adjoining edges from the same curve; those should be
// merged into a single trim.
bool merged;
do {
merged = false;
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
if(se->tag) continue;
if(se->auxA != stb.curve.v) continue;
if(( se->auxB && !stb.backwards) ||
(!se->auxB && stb.backwards)) continue;
if((se->a).Equals(stb.finish)) {
stb.finish = se->b;
se->tag = 1;
merged = true;
} else if((se->b).Equals(stb.start)) {
stb.start = se->a;
se->tag = 1;
merged = true;
}
}
} while(merged);
// And add the merged trim, with xyz (not uv like the polygon) pts
stb.start = PointAt(stb.start.x, stb.start.y);
stb.finish = PointAt(stb.finish.x, stb.finish.y);
trim.Add(&stb);
}
}
// For each edge, we record the membership of the regions to its left and
// right, which we call the "in direction" and "out direction" (wrt its
// outer normal)
#define INDIR (0)
#define OUTDIR (8)
// Regions of interest are the other shell itself, the coincident faces of the
// shell (same or opposite normal) and the original surface.
#define SHELL (0)
#define COINCIDENT_SAME (1)
#define COINCIDENT_OPPOSITE (2)
#define ORIG (3)
// Macro for building bit to test
#define INSIDE(reg, dir) (1 << ((reg)+(dir)))
static bool KeepRegion(int type, bool opA, int tag, int dir)
{
bool inShell = (tag & INSIDE(SHELL, dir)) != 0,
inSame = (tag & INSIDE(COINCIDENT_SAME, dir)) != 0,
inOpp = (tag & INSIDE(COINCIDENT_OPPOSITE, dir)) != 0,
inOrig = (tag & INSIDE(ORIG, dir)) != 0;
bool inFace = inSame || inOpp;
// If these are correct, then they should be independent of inShell
// if inFace is true.
if(!inOrig) return false;
switch(type) {
case SShell::AS_UNION:
if(opA) {
return (!inShell && !inFace);
} else {
return (!inShell && !inFace) || inSame;
}
break;
case SShell::AS_DIFFERENCE:
if(opA) {
return (!inShell && !inFace);
} else {
return (inShell && !inFace) || inSame;
}
break;
default: oops();
}
}
static bool KeepEdge(int type, bool opA, int tag)
{
bool keepIn = KeepRegion(type, opA, tag, INDIR),
keepOut = KeepRegion(type, opA, tag, OUTDIR);
// If the regions to the left and right of this edge are both in or both
// out, then this edge is not useful and should be discarded.
if(keepIn && !keepOut) return true;
return false;
}
static int TagByClassifiedEdge(int bspclass, int reg)
{
switch(bspclass) {
case SBspUv::INSIDE:
return INSIDE(reg, OUTDIR) | INSIDE(reg, INDIR);
case SBspUv::OUTSIDE:
return 0;
case SBspUv::EDGE_PARALLEL:
return INSIDE(reg, OUTDIR);
case SBspUv::EDGE_ANTIPARALLEL:
return INSIDE(reg, INDIR);
default: oops();
}
}
void DBPEDGE(int tag) {
dbp("edge: indir %s %s %s %s ; outdir %s %s %s %s",
(tag & INSIDE(SHELL, INDIR)) ? "shell" : "",
(tag & INSIDE(COINCIDENT_SAME, INDIR)) ? "coinc-same" : "",
(tag & INSIDE(COINCIDENT_OPPOSITE, INDIR)) ? "coinc-opp" : "",
(tag & INSIDE(ORIG, INDIR)) ? "orig" : "",
(tag & INSIDE(SHELL, OUTDIR)) ? "shell" : "",
(tag & INSIDE(COINCIDENT_SAME, OUTDIR)) ? "coinc-same" : "",
(tag & INSIDE(COINCIDENT_OPPOSITE, OUTDIR)) ? "coinc-opp" : "",
(tag & INSIDE(ORIG, OUTDIR)) ? "orig" : "");
}
//-----------------------------------------------------------------------------
// Trim this surface against the specified shell, in the way that's appropriate
// for the specified Boolean operation type (and which operand we are). We
// also need a pointer to the shell that contains our own surface, since that
// contains our original trim curves.
//-----------------------------------------------------------------------------
SSurface SSurface::MakeCopyTrimAgainst(SShell *agnst, SShell *parent,
SShell *into,
int type, bool opA)
{
SSurface ret;
// The returned surface is identical, just the trim curves change
ret = *this;
ZERO(&(ret.trim));
// First, build a list of the existing trim curves; update them to use
// the split curves.
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
STrimBy stn = *stb;
stn.curve = (parent->curve.FindById(stn.curve))->newH;
ret.trim.Add(&stn);
}
if(type == SShell::AS_DIFFERENCE && !opA) {
// The second operand of a Boolean difference gets turned inside out
ret.Reverse();
}
// Build up our original trim polygon
SEdgeList orig;
ZERO(&orig);
ret.MakeEdgesInto(into, &orig, true);
ret.trim.Clear();
// Find any surfaces from the other shell that are coincident with ours,
// and get the intersection polygons, grouping surfaces with the same
// and with opposite normal separately.
SEdgeList sameNormal, oppositeNormal;
ZERO(&sameNormal);
ZERO(&oppositeNormal);
agnst->MakeCoincidentEdgesInto(&ret, true, &sameNormal);
agnst->MakeCoincidentEdgesInto(&ret, false, &oppositeNormal);
// and build the trees for quick in-polygon testing
SBspUv *sameBsp = SBspUv::From(&sameNormal);
SBspUv *oppositeBsp = SBspUv::From(&oppositeNormal);
// And now intersect the other shell against us
SEdgeList inter;
ZERO(&inter);
SSurface *ss;
for(ss = agnst->surface.First(); ss; ss = agnst->surface.NextAfter(ss)) {
SCurve *sc;
for(sc = into->curve.First(); sc; sc = into->curve.NextAfter(sc)) {
if(!(sc->interCurve)) continue;
if(opA) {
if(sc->surfB.v != h.v || sc->surfA.v != ss->h.v) continue;
} else {
if(sc->surfA.v != h.v || sc->surfB.v != ss->h.v) continue;
}
int i;
for(i = 1; i < sc->pts.n; i++) {
Vector a = sc->pts.elem[i-1],
b = sc->pts.elem[i];
Point2d auv, buv;
ss->ClosestPointTo(a, &(auv.x), &(auv.y));
ss->ClosestPointTo(b, &(buv.x), &(buv.y));
int c = ss->bsp->ClassifyEdge(auv, buv);
if(c != SBspUv::OUTSIDE) {
Vector ta = Vector::From(0, 0, 0);
Vector tb = Vector::From(0, 0, 0);
ret.ClosestPointTo(a, &(ta.x), &(ta.y));
ret.ClosestPointTo(b, &(tb.x), &(tb.y));
Vector tn = ret.NormalAt(ta.x, ta.y);
Vector sn = ss->NormalAt(auv.x, auv.y);
bool bkwds = false;
if((tn.Cross(b.Minus(a))).Dot(sn) < 0) bkwds = !bkwds;
if(type == SShell::AS_DIFFERENCE && !opA) bkwds = !bkwds;
if(bkwds) {
inter.AddEdge(tb, ta, sc->h.v, 1);
} else {
inter.AddEdge(ta, tb, sc->h.v, 0);
}
}
}
}
}
SEdgeList final;
ZERO(&final);
SEdge *se;
for(se = orig.l.First(); se; se = orig.l.NextAfter(se)) {
Point2d auv = (se->a).ProjectXy(),
buv = (se->b).ProjectXy();
int c_same = sameBsp->ClassifyEdge(auv, buv);
int c_opp = oppositeBsp->ClassifyEdge(auv, buv);
// Get the midpoint of this edge
Point2d am = (auv.Plus(buv)).ScaledBy(0.5);
Vector pt = ret.PointAt(am.x, am.y);
// and the outer normal from the trim polygon (within the surface)
Vector n = ret.NormalAt(am.x, am.y);
Vector ea = ret.PointAt(auv.x, auv.y),
eb = ret.PointAt(buv.x, buv.y);
Vector ptout = n.Cross((eb.Minus(ea)));
int c_shell = agnst->ClassifyPoint(pt, ptout);
int tag = 0;
tag |= INSIDE(ORIG, INDIR);
tag |= TagByClassifiedEdge(c_same, COINCIDENT_SAME);
tag |= TagByClassifiedEdge(c_opp, COINCIDENT_OPPOSITE);
if(c_shell == SShell::INSIDE) {
tag |= INSIDE(SHELL, INDIR) | INSIDE(SHELL, OUTDIR);
} else if(c_shell == SShell::OUTSIDE) {
tag |= 0;
} else if(c_shell == SShell::ON_PARALLEL) {
tag |= INSIDE(SHELL, INDIR);
} else if(c_shell == SShell::ON_ANTIPARALLEL) {
tag |= INSIDE(SHELL, OUTDIR);
}
if(KeepEdge(type, opA, tag)) {
final.AddEdge(se->a, se->b, se->auxA, se->auxB);
}
}
for(se = inter.l.First(); se; se = inter.l.NextAfter(se)) {
Point2d auv = (se->a).ProjectXy(),
buv = (se->b).ProjectXy();
int c_this = bsp->ClassifyEdge(auv, buv);
int c_same = sameBsp->ClassifyEdge(auv, buv);
int c_opp = oppositeBsp->ClassifyEdge(auv, buv);
int tag = 0;
tag |= TagByClassifiedEdge(c_this, ORIG);
tag |= TagByClassifiedEdge(c_same, COINCIDENT_SAME);
tag |= TagByClassifiedEdge(c_opp, COINCIDENT_OPPOSITE);
if(type == SShell::AS_DIFFERENCE && !opA) {
// The second operand of a difference gets turned inside out
tag |= INSIDE(SHELL, INDIR);
} else {
tag |= INSIDE(SHELL, OUTDIR);
}
if(I == 0) DBPEDGE(tag);
if(KeepEdge(type, opA, tag)) {
final.AddEdge(se->b, se->a, se->auxA, !se->auxB);
}
}
// If our surface intersects an edge, then it will intersect two surfaces
// from the shell at that edge, so we'll get a duplicate. Cull those.
final.l.ClearTags();
int i, j;
for(i = 0; i < final.l.n; i++) {
se = &(final.l.elem[i]);
for(j = i+1; j < final.l.n; j++) {
SEdge *set = &(final.l.elem[j]);
if((set->a).Equals(se->a) && (set->b).Equals(se->b)) {
set->tag = 1;
}
}
if(I == 0) {
Vector mid = (se->a).Plus(se->b).ScaledBy(0.5);
Vector arrow = (se->b).Minus(se->a);
SWAP(double, arrow.x, arrow.y);
arrow.x *= -1;
arrow = arrow.WithMagnitude(0.03);
arrow = arrow.Plus(mid);
SS.nakedEdges.AddEdge(ret.PointAt(se->a.x, se->a.y),
ret.PointAt(se->b.x, se->b.y));
SS.nakedEdges.AddEdge(ret.PointAt(mid.x, mid.y),
ret.PointAt(arrow.x, arrow.y));
}
}
final.l.RemoveTagged();
// Use our reassembled edges to trim the new surface.
ret.TrimFromEdgeList(&final);
sameNormal.Clear();
oppositeNormal.Clear();
final.Clear();
inter.Clear();
orig.Clear();
return ret;
}
void SShell::CopySurfacesTrimAgainst(SShell *against, SShell *into,
int type, bool opA)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
SSurface ssn;
ssn = ss->MakeCopyTrimAgainst(against, this, into, type, opA);
into->surface.AddAndAssignId(&ssn);
I++;
}
}
void SShell::MakeIntersectionCurvesAgainst(SShell *agnst, SShell *into) {
SSurface *sa;
for(sa = agnst->surface.First(); sa; sa = agnst->surface.NextAfter(sa)) {
SSurface *sb;
for(sb = surface.First(); sb; sb = surface.NextAfter(sb)) {
// Intersect every surface from our shell against every surface
// from agnst; this will add zero or more curves to the curve
// list for into.
sa->IntersectAgainst(sb, agnst, this, into);
}
}
}
void SShell::CleanupAfterBoolean(void) {
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
}
}
void SShell::MakeFromBoolean(SShell *a, SShell *b, int type) {
a->MakeClassifyingBsps();
b->MakeClassifyingBsps();
// Copy over all the original curves, splitting them so that a
// piecwise linear segment never crosses a surface from the other
// shell.
a->CopyCurvesSplitAgainst(b, NULL, this);
b->CopyCurvesSplitAgainst(a, NULL, this);
// Generate the intersection curves for each surface in A against all
// the surfaces in B (which is all of the intersection curves).
a->MakeIntersectionCurvesAgainst(b, this);
I = 100;
if(b->surface.n == 0 || a->surface.n == 0) {
// Then trim and copy the surfaces
a->CopySurfacesTrimAgainst(b, this, type, true);
b->CopySurfacesTrimAgainst(a, this, type, false);
} else {
I = 0;
a->CopySurfacesTrimAgainst(b, this, type, true);
b->CopySurfacesTrimAgainst(a, this, type, false);
}
// And clean up the piecewise linear things we made as a calculation aid
a->CleanupAfterBoolean();
b->CleanupAfterBoolean();
}
//-----------------------------------------------------------------------------
// All of the BSP routines that we use to perform and accelerate polygon ops.
//-----------------------------------------------------------------------------
void SShell::MakeClassifyingBsps(void) {
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
ss->MakeClassifyingBsp(this);
}
}
void SSurface::MakeClassifyingBsp(SShell *shell) {
SEdgeList el;
ZERO(&el);
MakeEdgesInto(shell, &el, true);
bsp = SBspUv::From(&el);
el.Clear();
}
SBspUv *SBspUv::Alloc(void) {
return (SBspUv *)AllocTemporary(sizeof(SBspUv));
}
static int ByLength(const void *av, const void *bv)
{
SEdge *a = (SEdge *)av,
*b = (SEdge *)bv;
double la = (a->a).Minus(a->b).Magnitude(),
lb = (b->a).Minus(b->b).Magnitude();
// Sort in descending order, longest first. This improves numerical
// stability for the normals.
return (la < lb) ? 1 : -1;
}
SBspUv *SBspUv::From(SEdgeList *el) {
SEdgeList work;
ZERO(&work);
SEdge *se;
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
work.AddEdge(se->a, se->b, se->auxA, se->auxB);
}
qsort(work.l.elem, work.l.n, sizeof(work.l.elem[0]), ByLength);
SBspUv *bsp = NULL;
for(se = work.l.First(); se; se = work.l.NextAfter(se)) {
bsp = bsp->InsertEdge((se->a).ProjectXy(), (se->b).ProjectXy());
}
work.Clear();
return bsp;
}
SBspUv *SBspUv::InsertEdge(Point2d ea, Point2d eb) {
if(!this) {
SBspUv *ret = Alloc();
ret->a = ea;
ret->b = eb;
return ret;
}
Point2d n = ((b.Minus(a)).Normal()).WithMagnitude(1);
double d = a.Dot(n);
double dea = ea.Dot(n) - d,
deb = eb.Dot(n) - d;
if(fabs(dea) < LENGTH_EPS && fabs(deb) < LENGTH_EPS) {
// Line segment is coincident with this one, store in same node
SBspUv *m = Alloc();
m->a = ea;
m->b = eb;
m->more = more;
more = m;
} else if(fabs(dea) < LENGTH_EPS) {
// Point A lies on this lie, but point B does not
if(deb > 0) {
pos = pos->InsertEdge(ea, eb);
} else {
neg = neg->InsertEdge(ea, eb);
}
} else if(fabs(deb) < LENGTH_EPS) {
// Point B lies on this lie, but point A does not
if(dea > 0) {
pos = pos->InsertEdge(ea, eb);
} else {
neg = neg->InsertEdge(ea, eb);
}
} else if(dea > 0 && deb > 0) {
pos = pos->InsertEdge(ea, eb);
} else if(dea < 0 && deb < 0) {
neg = neg->InsertEdge(ea, eb);
} else {
// New edge crosses this one; we need to split.
double t = (d - n.Dot(ea)) / (n.Dot(eb.Minus(ea)));
Point2d pi = ea.Plus((eb.Minus(ea)).ScaledBy(t));
if(dea > 0) {
pos = pos->InsertEdge(ea, pi);
neg = neg->InsertEdge(pi, eb);
} else {
neg = neg->InsertEdge(ea, pi);
pos = pos->InsertEdge(pi, eb);
}
}
return this;
}
int SBspUv::ClassifyPoint(Point2d p, Point2d eb) {
if(!this) return OUTSIDE;
Point2d n = ((b.Minus(a)).Normal()).WithMagnitude(1);
double d = a.Dot(n);
double dp = p.Dot(n) - d;
if(fabs(dp) < LENGTH_EPS) {
SBspUv *f = this;
while(f) {
Point2d ba = (f->b).Minus(f->a);
if(p.DistanceToLine(f->a, ba, true) < LENGTH_EPS) {
if(eb.DistanceToLine(f->a, ba, false) < LENGTH_EPS) {
if(ba.Dot(eb.Minus(p)) > 0) {
return EDGE_PARALLEL;
} else {
return EDGE_ANTIPARALLEL;
}
} else {
return EDGE_OTHER;
}
}
f = f->more;
}
// Pick arbitrarily which side to send it down, doesn't matter
int c1 = neg ? neg->ClassifyPoint(p, eb) : OUTSIDE;
int c2 = pos ? pos->ClassifyPoint(p, eb) : INSIDE;
if(c1 != c2) {
dbp("MISMATCH: %d %d %08x %08x", c1, c2, neg, pos);
}
return c1;
} else if(dp > 0) {
return pos ? pos->ClassifyPoint(p, eb) : INSIDE;
} else {
return neg ? neg->ClassifyPoint(p, eb) : OUTSIDE;
}
}
int SBspUv::ClassifyEdge(Point2d ea, Point2d eb) {
return ClassifyPoint((ea.Plus(eb)).ScaledBy(0.5), eb);
}