532 lines
19 KiB
C++
532 lines
19 KiB
C++
//-----------------------------------------------------------------------------
|
|
// How to intersect two surfaces, to get some type of curve. This is either
|
|
// an exact special case (e.g., two planes to make a line), or a numerical
|
|
// thing.
|
|
//-----------------------------------------------------------------------------
|
|
#include "solvespace.h"
|
|
|
|
extern int FLAG;
|
|
|
|
void SSurface::AddExactIntersectionCurve(SBezier *sb, SSurface *srfB,
|
|
SShell *agnstA, SShell *agnstB, SShell *into)
|
|
{
|
|
SCurve sc;
|
|
ZERO(&sc);
|
|
// Important to keep the order of (surfA, surfB) consistent; when we later
|
|
// rewrite the identifiers, we rewrite surfA from A and surfB from B.
|
|
sc.surfA = h;
|
|
sc.surfB = srfB->h;
|
|
sc.exact = *sb;
|
|
sc.isExact = true;
|
|
|
|
// Now we have to piecewise linearize the curve. If there's already an
|
|
// identical curve in the shell, then follow that pwl exactly, otherwise
|
|
// calculate from scratch.
|
|
SCurve split, *existing = NULL, *se;
|
|
SBezier sbrev = *sb;
|
|
sbrev.Reverse();
|
|
bool backwards = false;
|
|
for(se = into->curve.First(); se; se = into->curve.NextAfter(se)) {
|
|
if(se->isExact) {
|
|
if(sb->Equals(&(se->exact))) {
|
|
existing = se;
|
|
break;
|
|
}
|
|
if(sbrev.Equals(&(se->exact))) {
|
|
existing = se;
|
|
backwards = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if(existing) {
|
|
SCurvePt *v;
|
|
for(v = existing->pts.First(); v; v = existing->pts.NextAfter(v)) {
|
|
sc.pts.Add(v);
|
|
}
|
|
if(backwards) sc.pts.Reverse();
|
|
split = sc;
|
|
ZERO(&sc);
|
|
} else {
|
|
sb->MakePwlInto(&(sc.pts));
|
|
// and split the line where it intersects our existing surfaces
|
|
split = sc.MakeCopySplitAgainst(agnstA, agnstB, this, srfB);
|
|
sc.Clear();
|
|
}
|
|
|
|
// Test if the curve lies entirely outside one of the
|
|
SCurvePt *scpt;
|
|
bool withinA = false, withinB = false;
|
|
for(scpt = split.pts.First(); scpt; scpt = split.pts.NextAfter(scpt)) {
|
|
double tol = 0.01;
|
|
Point2d puv;
|
|
ClosestPointTo(scpt->p, &puv);
|
|
if(puv.x > -tol && puv.x < 1 + tol &&
|
|
puv.y > -tol && puv.y < 1 + tol)
|
|
{
|
|
withinA = true;
|
|
}
|
|
srfB->ClosestPointTo(scpt->p, &puv);
|
|
if(puv.x > -tol && puv.x < 1 + tol &&
|
|
puv.y > -tol && puv.y < 1 + tol)
|
|
{
|
|
withinB = true;
|
|
}
|
|
// Break out early, no sense wasting time if we already have the answer.
|
|
if(withinA && withinB) break;
|
|
}
|
|
if(!(withinA && withinB)) {
|
|
// Intersection curve lies entirely outside one of the surfaces, so
|
|
// it's fake.
|
|
split.Clear();
|
|
return;
|
|
}
|
|
|
|
if(sb->deg == 2 && 0) {
|
|
dbp(" ");
|
|
SCurvePt *prev = NULL, *v;
|
|
dbp("split.pts.n = %d", split.pts.n);
|
|
for(v = split.pts.First(); v; v = split.pts.NextAfter(v)) {
|
|
if(prev) {
|
|
Vector e = (prev->p).Minus(v->p).WithMagnitude(0);
|
|
SS.nakedEdges.AddEdge((prev->p).Plus(e), (v->p).Minus(e));
|
|
}
|
|
prev = v;
|
|
}
|
|
}
|
|
// Nothing should be generating zero-len edges.
|
|
if((sb->Start()).Equals(sb->Finish())) oops();
|
|
|
|
split.source = SCurve::FROM_INTERSECTION;
|
|
into->curve.AddAndAssignId(&split);
|
|
}
|
|
|
|
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
|
|
SShell *into)
|
|
{
|
|
Vector amax, amin, bmax, bmin;
|
|
GetAxisAlignedBounding(&amax, &amin);
|
|
b->GetAxisAlignedBounding(&bmax, &bmin);
|
|
|
|
if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
|
|
// They cannot possibly intersect, no curves to generate
|
|
return;
|
|
}
|
|
|
|
Vector alongt, alongb;
|
|
SBezier oft, ofb;
|
|
bool isExtdt = this->IsExtrusion(&oft, &alongt),
|
|
isExtdb = b->IsExtrusion(&ofb, &alongb);
|
|
|
|
if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
|
|
// Line-line intersection; it's a plane or nothing.
|
|
Vector na = NormalAt(0, 0).WithMagnitude(1),
|
|
nb = b->NormalAt(0, 0).WithMagnitude(1);
|
|
double da = na.Dot(PointAt(0, 0)),
|
|
db = nb.Dot(b->PointAt(0, 0));
|
|
|
|
Vector dl = na.Cross(nb);
|
|
if(dl.Magnitude() < LENGTH_EPS) return; // parallel planes
|
|
dl = dl.WithMagnitude(1);
|
|
Vector p = Vector::AtIntersectionOfPlanes(na, da, nb, db);
|
|
|
|
// Trim it to the region 0 <= {u,v} <= 1 for each plane; not strictly
|
|
// necessary, since line will be split and excess edges culled, but
|
|
// this improves speed and robustness.
|
|
int i;
|
|
double tmax = VERY_POSITIVE, tmin = VERY_NEGATIVE;
|
|
for(i = 0; i < 2; i++) {
|
|
SSurface *s = (i == 0) ? this : b;
|
|
Vector tu, tv;
|
|
s->TangentsAt(0, 0, &tu, &tv);
|
|
|
|
double up, vp, ud, vd;
|
|
s->ClosestPointTo(p, &up, &vp);
|
|
ud = (dl.Dot(tu)) / tu.MagSquared();
|
|
vd = (dl.Dot(tv)) / tv.MagSquared();
|
|
|
|
// so u = up + t*ud
|
|
// v = vp + t*vd
|
|
if(ud > LENGTH_EPS) {
|
|
tmin = max(tmin, -up/ud);
|
|
tmax = min(tmax, (1 - up)/ud);
|
|
} else if(ud < -LENGTH_EPS) {
|
|
tmax = min(tmax, -up/ud);
|
|
tmin = max(tmin, (1 - up)/ud);
|
|
} else {
|
|
if(up < -LENGTH_EPS || up > 1 + LENGTH_EPS) {
|
|
// u is constant, and outside [0, 1]
|
|
tmax = VERY_NEGATIVE;
|
|
}
|
|
}
|
|
if(vd > LENGTH_EPS) {
|
|
tmin = max(tmin, -vp/vd);
|
|
tmax = min(tmax, (1 - vp)/vd);
|
|
} else if(vd < -LENGTH_EPS) {
|
|
tmax = min(tmax, -vp/vd);
|
|
tmin = max(tmin, (1 - vp)/vd);
|
|
} else {
|
|
if(vp < -LENGTH_EPS || vp > 1 + LENGTH_EPS) {
|
|
// v is constant, and outside [0, 1]
|
|
tmax = VERY_NEGATIVE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(tmax > tmin + LENGTH_EPS) {
|
|
SBezier bezier = SBezier::From(p.Plus(dl.ScaledBy(tmin)),
|
|
p.Plus(dl.ScaledBy(tmax)));
|
|
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
|
|
}
|
|
} else if((degm == 1 && degn == 1 && isExtdb) ||
|
|
(b->degm == 1 && b->degn == 1 && isExtdt))
|
|
{
|
|
// The intersection between a plane and a surface of extrusion
|
|
SSurface *splane, *sext;
|
|
if(degm == 1 && degn == 1) {
|
|
splane = this;
|
|
sext = b;
|
|
} else {
|
|
splane = b;
|
|
sext = this;
|
|
}
|
|
|
|
Vector n = splane->NormalAt(0, 0).WithMagnitude(1), along;
|
|
double d = n.Dot(splane->PointAt(0, 0));
|
|
SBezier bezier;
|
|
(void)sext->IsExtrusion(&bezier, &along);
|
|
|
|
if(fabs(n.Dot(along)) < LENGTH_EPS) {
|
|
// Direction of extrusion is parallel to plane; so intersection
|
|
// is zero or more lines. Build a line within the plane, and
|
|
// normal to the direction of extrusion, and intersect that line
|
|
// against the surface; each intersection point corresponds to
|
|
// a line.
|
|
Vector pm, alu, p0, dp;
|
|
// a point halfway along the extrusion
|
|
pm = ((sext->ctrl[0][0]).Plus(sext->ctrl[0][1])).ScaledBy(0.5);
|
|
alu = along.WithMagnitude(1);
|
|
dp = (n.Cross(along)).WithMagnitude(1);
|
|
// n, alu, and dp form an orthogonal csys; set n component to
|
|
// place it on the plane, alu component to lie halfway along
|
|
// extrusion, and dp component doesn't matter so zero
|
|
p0 = n.ScaledBy(d).Plus(alu.ScaledBy(pm.Dot(alu)));
|
|
|
|
List<SInter> inters;
|
|
ZERO(&inters);
|
|
sext->AllPointsIntersecting(
|
|
p0, p0.Plus(dp), &inters, false, false, true);
|
|
|
|
SInter *si;
|
|
for(si = inters.First(); si; si = inters.NextAfter(si)) {
|
|
Vector al = along.ScaledBy(0.5);
|
|
SBezier bezier;
|
|
bezier = SBezier::From((si->p).Minus(al), (si->p).Plus(al));
|
|
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
|
|
}
|
|
|
|
inters.Clear();
|
|
} else {
|
|
// Direction of extrusion is not parallel to plane; so
|
|
// intersection is projection of extruded curve into our plane.
|
|
int i;
|
|
for(i = 0; i <= bezier.deg; i++) {
|
|
Vector p0 = bezier.ctrl[i],
|
|
p1 = p0.Plus(along);
|
|
|
|
bezier.ctrl[i] =
|
|
Vector::AtIntersectionOfPlaneAndLine(n, d, p0, p1, NULL);
|
|
}
|
|
|
|
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
|
|
}
|
|
} else if(isExtdt && isExtdb &&
|
|
sqrt(fabs(alongt.Dot(alongb))) >
|
|
sqrt(alongt.Magnitude() * alongb.Magnitude()) - LENGTH_EPS)
|
|
{
|
|
// Two surfaces of extrusion along the same axis. So they might
|
|
// intersect along some number of lines parallel to the axis.
|
|
Vector axis = alongt.WithMagnitude(1);
|
|
|
|
List<SInter> inters;
|
|
ZERO(&inters);
|
|
List<Vector> lv;
|
|
ZERO(&lv);
|
|
|
|
double a_axis0 = ( ctrl[0][0]).Dot(axis),
|
|
a_axis1 = ( ctrl[0][1]).Dot(axis),
|
|
b_axis0 = (b->ctrl[0][0]).Dot(axis),
|
|
b_axis1 = (b->ctrl[0][1]).Dot(axis);
|
|
|
|
if(a_axis0 > a_axis1) SWAP(double, a_axis0, a_axis1);
|
|
if(b_axis0 > b_axis1) SWAP(double, b_axis0, b_axis1);
|
|
|
|
double ab_axis0 = max(a_axis0, b_axis0),
|
|
ab_axis1 = min(a_axis1, b_axis1);
|
|
|
|
if(fabs(ab_axis0 - ab_axis1) < LENGTH_EPS) {
|
|
// The line would be zero-length
|
|
return;
|
|
}
|
|
|
|
Vector axis0 = axis.ScaledBy(ab_axis0),
|
|
axis1 = axis.ScaledBy(ab_axis1),
|
|
axisc = (axis0.Plus(axis1)).ScaledBy(0.5);
|
|
|
|
oft.MakePwlInto(&lv);
|
|
|
|
int i;
|
|
for(i = 0; i < lv.n - 1; i++) {
|
|
Vector pa = lv.elem[i], pb = lv.elem[i+1];
|
|
pa = pa.Minus(axis.ScaledBy(pa.Dot(axis)));
|
|
pb = pb.Minus(axis.ScaledBy(pb.Dot(axis)));
|
|
pa = pa.Plus(axisc);
|
|
pb = pb.Plus(axisc);
|
|
|
|
b->AllPointsIntersecting(pa, pb, &inters, true, false, false);
|
|
}
|
|
|
|
SInter *si;
|
|
for(si = inters.First(); si; si = inters.NextAfter(si)) {
|
|
Vector p = (si->p).Minus(axis.ScaledBy((si->p).Dot(axis)));
|
|
double ub, vb;
|
|
b->ClosestPointTo(p, &ub, &vb, true);
|
|
SSurface plane;
|
|
plane = SSurface::FromPlane(p, axis.Normal(0), axis.Normal(1));
|
|
|
|
b->PointOnSurfaces(this, &plane, &ub, &vb);
|
|
|
|
p = b->PointAt(ub, vb);
|
|
|
|
SBezier bezier;
|
|
bezier = SBezier::From(p.Plus(axis0), p.Plus(axis1));
|
|
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
|
|
}
|
|
|
|
inters.Clear();
|
|
lv.Clear();
|
|
} else {
|
|
// Try intersecting the surfaces numerically, by a marching algorithm.
|
|
// First, we find all the intersections between a surface and the
|
|
// boundary of the other surface.
|
|
SPointList spl;
|
|
ZERO(&spl);
|
|
int a;
|
|
for(a = 0; a < 2; a++) {
|
|
SShell *shA = (a == 0) ? agnstA : agnstB,
|
|
*shB = (a == 0) ? agnstB : agnstA;
|
|
SSurface *srfA = (a == 0) ? this : b,
|
|
*srfB = (a == 0) ? b : this;
|
|
|
|
SEdgeList el;
|
|
ZERO(&el);
|
|
srfA->MakeEdgesInto(shA, &el, AS_XYZ, NULL);
|
|
|
|
SEdge *se;
|
|
for(se = el.l.First(); se; se = el.l.NextAfter(se)) {
|
|
List<SInter> lsi;
|
|
ZERO(&lsi);
|
|
|
|
srfB->AllPointsIntersecting(se->a, se->b, &lsi,
|
|
true, true, false);
|
|
if(lsi.n == 0) continue;
|
|
|
|
// Find the other surface that this curve trims.
|
|
hSCurve hsc = { se->auxA };
|
|
SCurve *sc = shA->curve.FindById(hsc);
|
|
hSSurface hother = (sc->surfA.v == srfA->h.v) ?
|
|
sc->surfB : sc->surfA;
|
|
SSurface *other = shA->surface.FindById(hother);
|
|
|
|
SInter *si;
|
|
for(si = lsi.First(); si; si = lsi.NextAfter(si)) {
|
|
Vector p = si->p;
|
|
double u, v;
|
|
srfB->ClosestPointTo(p, &u, &v);
|
|
srfB->PointOnSurfaces(srfA, other, &u, &v);
|
|
p = srfB->PointAt(u, v);
|
|
if(!spl.ContainsPoint(p)) {
|
|
SPoint sp;
|
|
sp.p = p;
|
|
// We also need the edge normal, so that we know in
|
|
// which direction to march.
|
|
srfA->ClosestPointTo(p, &u, &v);
|
|
Vector n = srfA->NormalAt(u, v);
|
|
sp.auxv = n.Cross((se->b).Minus(se->a));
|
|
sp.auxv = (sp.auxv).WithMagnitude(1);
|
|
|
|
spl.l.Add(&sp);
|
|
}
|
|
}
|
|
lsi.Clear();
|
|
}
|
|
|
|
el.Clear();
|
|
}
|
|
|
|
while(spl.l.n >= 2) {
|
|
SCurve sc;
|
|
ZERO(&sc);
|
|
sc.surfA = h;
|
|
sc.surfB = b->h;
|
|
sc.isExact = false;
|
|
sc.source = SCurve::FROM_INTERSECTION;
|
|
|
|
Vector start = spl.l.elem[0].p,
|
|
startv = spl.l.elem[0].auxv;
|
|
spl.l.ClearTags();
|
|
spl.l.elem[0].tag = 1;
|
|
spl.l.RemoveTagged();
|
|
|
|
// Our chord tolerance is whatever the user specified
|
|
double maxtol = SS.ChordTolMm();
|
|
int maxsteps = max(300, SS.maxSegments*3);
|
|
|
|
// The curve starts at our starting point.
|
|
SCurvePt padd;
|
|
ZERO(&padd);
|
|
padd.vertex = true;
|
|
padd.p = start;
|
|
sc.pts.Add(&padd);
|
|
|
|
Point2d pa, pb;
|
|
Vector np, npc;
|
|
bool fwd;
|
|
// Better to start with a too-small step, so that we don't miss
|
|
// features of the curve entirely.
|
|
double tol, step = maxtol;
|
|
for(a = 0; a < maxsteps; a++) {
|
|
ClosestPointTo(start, &pa);
|
|
b->ClosestPointTo(start, &pb);
|
|
|
|
Vector na = NormalAt(pa).WithMagnitude(1),
|
|
nb = b->NormalAt(pb).WithMagnitude(1);
|
|
|
|
if(a == 0) {
|
|
Vector dp = nb.Cross(na);
|
|
if(dp.Dot(startv) < 0) {
|
|
// We want to march in the more inward direction.
|
|
fwd = true;
|
|
} else {
|
|
fwd = false;
|
|
}
|
|
}
|
|
|
|
int i;
|
|
for(i = 0; i < 20; i++) {
|
|
Vector dp = nb.Cross(na);
|
|
if(!fwd) dp = dp.ScaledBy(-1);
|
|
dp = dp.WithMagnitude(step);
|
|
|
|
np = start.Plus(dp);
|
|
npc = ClosestPointOnThisAndSurface(b, np);
|
|
tol = (npc.Minus(np)).Magnitude();
|
|
|
|
if(tol > maxtol*0.8) {
|
|
step *= 0.90;
|
|
} else {
|
|
step /= 0.90;
|
|
}
|
|
|
|
if((tol < maxtol) && (tol > maxtol/2)) {
|
|
// If we meet the chord tolerance test, and we're
|
|
// not too fine, then we break out.
|
|
break;
|
|
}
|
|
}
|
|
|
|
SPoint *sp;
|
|
for(sp = spl.l.First(); sp; sp = spl.l.NextAfter(sp)) {
|
|
if((sp->p).OnLineSegment(start, npc, 2*SS.ChordTolMm())) {
|
|
sp->tag = 1;
|
|
a = maxsteps;
|
|
npc = sp->p;
|
|
}
|
|
}
|
|
|
|
padd.p = npc;
|
|
padd.vertex = (a == maxsteps);
|
|
sc.pts.Add(&padd);
|
|
|
|
start = npc;
|
|
}
|
|
|
|
spl.l.RemoveTagged();
|
|
|
|
// And now we split and insert the curve
|
|
SCurve split = sc.MakeCopySplitAgainst(agnstA, agnstB, this, b);
|
|
sc.Clear();
|
|
into->curve.AddAndAssignId(&split);
|
|
}
|
|
spl.Clear();
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Are two surfaces coincident, with the same (or with opposite) normals?
|
|
// Currently handles planes only.
|
|
//-----------------------------------------------------------------------------
|
|
bool SSurface::CoincidentWith(SSurface *ss, bool sameNormal) {
|
|
if(degm != 1 || degn != 1) return false;
|
|
if(ss->degm != 1 || ss->degn != 1) return false;
|
|
|
|
Vector p = ctrl[0][0];
|
|
Vector n = NormalAt(0, 0).WithMagnitude(1);
|
|
double d = n.Dot(p);
|
|
|
|
if(!ss->CoincidentWithPlane(n, d)) return false;
|
|
|
|
Vector n2 = ss->NormalAt(0, 0);
|
|
if(sameNormal) {
|
|
if(n2.Dot(n) < 0) return false;
|
|
} else {
|
|
if(n2.Dot(n) > 0) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SSurface::CoincidentWithPlane(Vector n, double d) {
|
|
if(degm != 1 || degn != 1) return false;
|
|
if(fabs(n.Dot(ctrl[0][0]) - d) > LENGTH_EPS) return false;
|
|
if(fabs(n.Dot(ctrl[0][1]) - d) > LENGTH_EPS) return false;
|
|
if(fabs(n.Dot(ctrl[1][0]) - d) > LENGTH_EPS) return false;
|
|
if(fabs(n.Dot(ctrl[1][1]) - d) > LENGTH_EPS) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// In our shell, find all surfaces that are coincident with the prototype
|
|
// surface (with same or opposite normal, as specified), and copy all of
|
|
// their trim polygons into el. The edges are returned in uv coordinates for
|
|
// the prototype surface.
|
|
//-----------------------------------------------------------------------------
|
|
void SShell::MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal,
|
|
SEdgeList *el, SShell *useCurvesFrom)
|
|
{
|
|
SSurface *ss;
|
|
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
|
|
if(proto->CoincidentWith(ss, sameNormal)) {
|
|
ss->MakeEdgesInto(this, el, SSurface::AS_XYZ, useCurvesFrom);
|
|
}
|
|
}
|
|
|
|
SEdge *se;
|
|
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
|
|
double ua, va, ub, vb;
|
|
proto->ClosestPointTo(se->a, &ua, &va);
|
|
proto->ClosestPointTo(se->b, &ub, &vb);
|
|
|
|
if(sameNormal) {
|
|
se->a = Vector::From(ua, va, 0);
|
|
se->b = Vector::From(ub, vb, 0);
|
|
} else {
|
|
// Flip normal, so flip all edge directions
|
|
se->b = Vector::From(ua, va, 0);
|
|
se->a = Vector::From(ub, vb, 0);
|
|
}
|
|
}
|
|
}
|
|
|