solvespace/generate.cpp

382 lines
12 KiB
C++

#include "solvespace.h"
void SolveSpace::MarkGroupDirtyByEntity(hEntity he) {
Entity *e = SS.GetEntity(he);
MarkGroupDirty(e->group);
}
void SolveSpace::MarkGroupDirty(hGroup hg) {
int i;
bool go = false;
for(i = 0; i < group.n; i++) {
Group *g = &(group.elem[i]);
if(g->h.v == hg.v) {
go = true;
}
if(go) {
g->clean = false;
}
}
unsaved = true;
}
bool SolveSpace::PruneOrphans(void) {
int i;
for(i = 0; i < request.n; i++) {
Request *r = &(request.elem[i]);
if(GroupExists(r->group)) continue;
(deleted.requests)++;
request.RemoveById(r->h);
return true;
}
for(i = 0; i < constraint.n; i++) {
Constraint *c = &(constraint.elem[i]);
if(GroupExists(c->group)) continue;
(deleted.constraints)++;
(deleted.nonTrivialConstraints)++;
constraint.RemoveById(c->h);
return true;
}
return false;
}
bool SolveSpace::GroupsInOrder(hGroup before, hGroup after) {
if(before.v == 0) return true;
if(after.v == 0) return true;
int beforep = -1, afterp = -1;
int i;
for(i = 0; i < group.n; i++) {
Group *g = &(group.elem[i]);
if(g->h.v == before.v) beforep = i;
if(g->h.v == after.v) afterp = i;
}
if(beforep < 0 || afterp < 0) return false;
if(beforep >= afterp) return false;
return true;
}
bool SolveSpace::GroupExists(hGroup hg) {
// A nonexistent group is not acceptable
return group.FindByIdNoOops(hg) ? true : false;
}
bool SolveSpace::EntityExists(hEntity he) {
// A nonexstient entity is acceptable, though, usually just means it
// doesn't apply.
if(he.v == Entity::NO_ENTITY.v) return true;
return entity.FindByIdNoOops(he) ? true : false;
}
bool SolveSpace::PruneGroups(hGroup hg) {
Group *g = GetGroup(hg);
if(GroupsInOrder(g->opA, hg) &&
EntityExists(g->predef.origin) &&
EntityExists(g->predef.entityB) &&
EntityExists(g->predef.entityC))
{
return false;
}
(deleted.groups)++;
group.RemoveById(g->h);
return true;
}
bool SolveSpace::PruneRequests(hGroup hg) {
int i;
for(i = 0; i < entity.n; i++) {
Entity *e = &(entity.elem[i]);
if(e->group.v != hg.v) continue;
if(EntityExists(e->workplane)) continue;
if(!e->h.isFromRequest()) oops();
(deleted.requests)++;
request.RemoveById(e->h.request());
return true;
}
return false;
}
bool SolveSpace::PruneConstraints(hGroup hg) {
int i;
for(i = 0; i < constraint.n; i++) {
Constraint *c = &(constraint.elem[i]);
if(c->group.v != hg.v) continue;
if(EntityExists(c->workplane) &&
EntityExists(c->ptA) &&
EntityExists(c->ptB) &&
EntityExists(c->entityA) &&
EntityExists(c->entityB) &&
EntityExists(c->entityC) &&
EntityExists(c->entityD))
{
continue;
}
(deleted.constraints)++;
if(c->type != Constraint::POINTS_COINCIDENT &&
c->type != Constraint::HORIZONTAL &&
c->type != Constraint::VERTICAL)
{
(deleted.nonTrivialConstraints)++;
}
constraint.RemoveById(c->h);
return true;
}
return false;
}
void SolveSpace::GenerateAll(void) {
int i;
int firstDirty = INT_MAX, lastVisible = 0;
// Start from the first dirty group, and solve until the active group,
// since all groups after the active group are hidden.
for(i = 0; i < group.n; i++) {
Group *g = &(group.elem[i]);
g->order = i;
if((!g->clean) || (g->solved.how != Group::SOLVED_OKAY)) {
firstDirty = min(firstDirty, i);
}
if(g->h.v == SS.GW.activeGroup.v) {
lastVisible = i;
}
}
if(firstDirty == INT_MAX || lastVisible == 0) {
// All clean; so just regenerate the entities, and don't solve anything.
GenerateAll(-1, -1);
} else {
GenerateAll(firstDirty, lastVisible);
}
}
void SolveSpace::GenerateAll(int first, int last, bool andFindFree) {
int i, j;
// Remove any requests or constraints that refer to a nonexistent
// group; can check those immediately, since we know what the list
// of groups should be.
while(PruneOrphans())
;
// Don't lose our numerical guesses when we regenerate.
IdList<Param,hParam> prev;
param.MoveSelfInto(&prev);
entity.Clear();
for(i = 0; i < group.n; i++) {
Group *g = &(group.elem[i]);
// The group may depend on entities or other groups, to define its
// workplane geometry or for its operands. Those must already exist
// in a previous group, so check them before generating.
if(PruneGroups(g->h))
goto pruned;
for(j = 0; j < request.n; j++) {
Request *r = &(request.elem[j]);
if(r->group.v != g->h.v) continue;
r->Generate(&entity, &param);
}
g->Generate(&entity, &param);
// The requests and constraints depend on stuff in this or the
// previous group, so check them after generating.
if(PruneRequests(g->h) || PruneConstraints(g->h))
goto pruned;
// Use the previous values for params that we've seen before, as
// initial guesses for the solver.
for(j = 0; j < param.n; j++) {
Param *newp = &(param.elem[j]);
if(newp->known) continue;
Param *prevp = prev.FindByIdNoOops(newp->h);
if(prevp) newp->val = prevp->val;
}
if(g->h.v == Group::HGROUP_REFERENCES.v) {
ForceReferences();
g->solved.how = Group::SOLVED_OKAY;
g->clean = true;
} else {
if(i >= first && i <= last) {
// See if we have to do the vertex-to-vertex mesh, that
// we used for emphasized edges.
if(first == i &&
(g->type == Group::DRAWING_3D ||
g->type == Group::DRAWING_WORKPLANE))
{
// Special case--if the first dirty group doesn't change
// the mesh, then no need to regen edges for it.
} else {
g->vvMeshClean = false; // so we'll regen it
}
// The group falls inside the range, so really solve it,
// and then regenerate the mesh based on the solved stuff.
SolveGroup(g->h, andFindFree);
g->GeneratePolygon();
g->GenerateMesh();
g->clean = true;
} else {
// The group falls outside the range, so just assume that
// it's good wherever we left it. The mesh is unchanged,
// and the parameters must be marked as known.
for(j = 0; j < param.n; j++) {
Param *newp = &(param.elem[j]);
Param *prevp = prev.FindByIdNoOops(newp->h);
if(prevp) newp->known = true;
}
}
}
}
// And update any reference dimensions with their new values
for(i = 0; i < constraint.n; i++) {
Constraint *c = &(constraint.elem[i]);
if(c->reference) {
c->ModifyToSatisfy();
}
}
// Make sure the point that we're tracing exists.
if(traced.point.v && !entity.FindByIdNoOops(traced.point)) {
traced.point = Entity::NO_ENTITY;
}
// And if we're tracing a point, add its new value to the path
if(traced.point.v) {
Entity *pt = GetEntity(traced.point);
traced.path.AddPoint(pt->PointGetNum());
}
prev.Clear();
InvalidateGraphics();
// Remove nonexistent selection items, for same reason we waited till
// the end to put up a dialog box.
GW.ClearNonexistentSelectionItems();
if(deleted.requests > 0 || deleted.constraints > 0 || deleted.groups > 0) {
// All sorts of interesting things could have happened; for example,
// the active group or active workplane could have been deleted. So
// clear all that out.
if(deleted.groups > 0) {
SS.TW.ClearSuper();
}
later.showTW = true;
GW.ClearSuper();
// People get annoyed if I complain whenever they delete any request,
// and I otherwise will, since those always come with pt-coincident
// constraints.
if(deleted.requests > 0 || deleted.nonTrivialConstraints > 0 ||
deleted.groups > 0)
{
// Don't display any errors until we've regenerated fully. The
// sketch is not necessarily in a consistent state until we've
// pruned any orphaned etc. objects, and the message loop for the
// messagebox could allow us to repaint and crash. But now we must
// be fine.
Error("Additional sketch elements were deleted, because they "
"depend on the element that was just deleted explicitly. "
"These include: \r\n"
" %d request%s\r\n"
" %d constraint%s\r\n"
" %d group%s\r\n\r\n"
"Choose Edit -> Undo to undelete all elements.",
deleted.requests, deleted.requests == 1 ? "" : "s",
deleted.constraints, deleted.constraints == 1 ? "" : "s",
deleted.groups, deleted.groups == 1 ? "" : "s");
}
memset(&deleted, 0, sizeof(deleted));
}
FreeAllTemporary();
allConsistent = true;
return;
pruned:
// Restore the numerical guesses
param.Clear();
prev.MoveSelfInto(&param);
// Try again
GenerateAll(first, last);
}
void SolveSpace::ForceReferences(void) {
// Force the values of the paramters that define the three reference
// coordinate systems.
static const struct {
hRequest hr;
Quaternion q;
} Quat[] = {
{ Request::HREQUEST_REFERENCE_XY, { 1, 0, 0, 0, } },
{ Request::HREQUEST_REFERENCE_YZ, { 0.5, 0.5, 0.5, 0.5, } },
{ Request::HREQUEST_REFERENCE_ZX, { 0.5, -0.5, -0.5, -0.5, } },
};
for(int i = 0; i < 3; i++) {
hRequest hr = Quat[i].hr;
Entity *wrkpl = GetEntity(hr.entity(0));
// The origin for our coordinate system, always zero
Entity *origin = GetEntity(wrkpl->point[0]);
origin->PointForceTo(Vector::From(0, 0, 0));
GetParam(origin->param[0])->known = true;
GetParam(origin->param[1])->known = true;
GetParam(origin->param[2])->known = true;
// The quaternion that defines the rotation, from the table.
Entity *normal = GetEntity(wrkpl->normal);
normal->NormalForceTo(Quat[i].q);
GetParam(normal->param[0])->known = true;
GetParam(normal->param[1])->known = true;
GetParam(normal->param[2])->known = true;
GetParam(normal->param[3])->known = true;
}
}
void SolveSpace::SolveGroup(hGroup hg, bool andFindFree) {
int i;
// Clear out the system to be solved.
sys.entity.Clear();
sys.param.Clear();
sys.eq.Clear();
// And generate all the params for requests in this group
for(i = 0; i < request.n; i++) {
Request *r = &(request.elem[i]);
if(r->group.v != hg.v) continue;
r->Generate(&(sys.entity), &(sys.param));
}
// And for the group itself
Group *g = SS.GetGroup(hg);
g->Generate(&(sys.entity), &(sys.param));
// Set the initial guesses for all the params
for(i = 0; i < sys.param.n; i++) {
Param *p = &(sys.param.elem[i]);
p->known = false;
p->val = GetParam(p->h)->val;
}
sys.Solve(g, andFindFree);
FreeAllTemporary();
}
bool SolveSpace::AllGroupsOkay(void) {
int i;
bool allOk = true;
for(i = 0; i < group.n; i++) {
if(group.elem[i].solved.how != Group::SOLVED_OKAY) {
allOk = false;
}
}
return allOk;
}