2567 lines
79 KiB
C
2567 lines
79 KiB
C
/*
|
||
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
|
||
All rights reserved
|
||
|
||
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
||
|
||
This file is part of the FreeRTOS distribution.
|
||
|
||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License (version 2) as published by the
|
||
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
|
||
|
||
***************************************************************************
|
||
>>! NOTE: The modification to the GPL is included to allow you to !<<
|
||
>>! distribute a combined work that includes FreeRTOS without being !<<
|
||
>>! obliged to provide the source code for proprietary components !<<
|
||
>>! outside of the FreeRTOS kernel. !<<
|
||
***************************************************************************
|
||
|
||
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
FOR A PARTICULAR PURPOSE. Full license text is available on the following
|
||
link: http://www.freertos.org/a00114.html
|
||
|
||
***************************************************************************
|
||
* *
|
||
* FreeRTOS provides completely free yet professionally developed, *
|
||
* robust, strictly quality controlled, supported, and cross *
|
||
* platform software that is more than just the market leader, it *
|
||
* is the industry's de facto standard. *
|
||
* *
|
||
* Help yourself get started quickly while simultaneously helping *
|
||
* to support the FreeRTOS project by purchasing a FreeRTOS *
|
||
* tutorial book, reference manual, or both: *
|
||
* http://www.FreeRTOS.org/Documentation *
|
||
* *
|
||
***************************************************************************
|
||
|
||
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
|
||
the FAQ page "My application does not run, what could be wrong?". Have you
|
||
defined configASSERT()?
|
||
|
||
http://www.FreeRTOS.org/support - In return for receiving this top quality
|
||
embedded software for free we request you assist our global community by
|
||
participating in the support forum.
|
||
|
||
http://www.FreeRTOS.org/training - Investing in training allows your team to
|
||
be as productive as possible as early as possible. Now you can receive
|
||
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
|
||
Ltd, and the world's leading authority on the world's leading RTOS.
|
||
|
||
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
||
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
|
||
compatible FAT file system, and our tiny thread aware UDP/IP stack.
|
||
|
||
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
|
||
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
|
||
|
||
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
|
||
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
|
||
licenses offer ticketed support, indemnification and commercial middleware.
|
||
|
||
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
|
||
engineered and independently SIL3 certified version for use in safety and
|
||
mission critical applications that require provable dependability.
|
||
|
||
1 tab == 4 spaces!
|
||
*/
|
||
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
||
all the API functions to use the MPU wrappers. That should only be done when
|
||
task.h is included from an application file. */
|
||
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
||
|
||
#include "FreeRTOS.h"
|
||
#include "task.h"
|
||
#include "queue.h"
|
||
|
||
#if ( configUSE_CO_ROUTINES == 1 )
|
||
#include "croutine.h"
|
||
#endif
|
||
|
||
/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
|
||
MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
|
||
header files above, but not in this file, in order to generate the correct
|
||
privileged Vs unprivileged linkage and placement. */
|
||
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
|
||
|
||
|
||
/* Constants used with the cRxLock and cTxLock structure members. */
|
||
#define queueUNLOCKED ( ( int8_t ) -1 )
|
||
#define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
|
||
|
||
/* When the Queue_t structure is used to represent a base queue its pcHead and
|
||
pcTail members are used as pointers into the queue storage area. When the
|
||
Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
|
||
not necessary, and the pcHead pointer is set to NULL to indicate that the
|
||
pcTail pointer actually points to the mutex holder (if any). Map alternative
|
||
names to the pcHead and pcTail structure members to ensure the readability of
|
||
the code is maintained despite this dual use of two structure members. An
|
||
alternative implementation would be to use a union, but use of a union is
|
||
against the coding standard (although an exception to the standard has been
|
||
permitted where the dual use also significantly changes the type of the
|
||
structure member). */
|
||
#define pxMutexHolder pcTail
|
||
#define uxQueueType pcHead
|
||
#define queueQUEUE_IS_MUTEX NULL
|
||
|
||
/* Semaphores do not actually store or copy data, so have an item size of
|
||
zero. */
|
||
#define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
|
||
#define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
|
||
|
||
#if( configUSE_PREEMPTION == 0 )
|
||
/* If the cooperative scheduler is being used then a yield should not be
|
||
performed just because a higher priority task has been woken. */
|
||
#define queueYIELD_IF_USING_PREEMPTION()
|
||
#else
|
||
#define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
|
||
#endif
|
||
|
||
/*
|
||
* Definition of the queue used by the scheduler.
|
||
* Items are queued by copy, not reference. See the following link for the
|
||
* rationale: http://www.freertos.org/Embedded-RTOS-Queues.html
|
||
*/
|
||
typedef struct QueueDefinition
|
||
{
|
||
int8_t *pcHead; /*< Points to the beginning of the queue storage area. */
|
||
int8_t *pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
|
||
int8_t *pcWriteTo; /*< Points to the free next place in the storage area. */
|
||
|
||
union /* Use of a union is an exception to the coding standard to ensure two mutually exclusive structure members don't appear simultaneously (wasting RAM). */
|
||
{
|
||
int8_t *pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
|
||
UBaseType_t uxRecursiveCallCount;/*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
|
||
} u;
|
||
|
||
List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
|
||
List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
|
||
|
||
volatile UBaseType_t uxMessagesWaiting;/*< The number of items currently in the queue. */
|
||
UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
|
||
UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
|
||
|
||
volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
|
||
volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
|
||
|
||
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
||
uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
|
||
#endif
|
||
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
struct QueueDefinition *pxQueueSetContainer;
|
||
#endif
|
||
|
||
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
UBaseType_t uxQueueNumber;
|
||
uint8_t ucQueueType;
|
||
#endif
|
||
|
||
} xQUEUE;
|
||
|
||
/* The old xQUEUE name is maintained above then typedefed to the new Queue_t
|
||
name below to enable the use of older kernel aware debuggers. */
|
||
typedef xQUEUE Queue_t;
|
||
|
||
/*-----------------------------------------------------------*/
|
||
|
||
/*
|
||
* The queue registry is just a means for kernel aware debuggers to locate
|
||
* queue structures. It has no other purpose so is an optional component.
|
||
*/
|
||
#if ( configQUEUE_REGISTRY_SIZE > 0 )
|
||
|
||
/* The type stored within the queue registry array. This allows a name
|
||
to be assigned to each queue making kernel aware debugging a little
|
||
more user friendly. */
|
||
typedef struct QUEUE_REGISTRY_ITEM
|
||
{
|
||
const char *pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
||
QueueHandle_t xHandle;
|
||
} xQueueRegistryItem;
|
||
|
||
/* The old xQueueRegistryItem name is maintained above then typedefed to the
|
||
new xQueueRegistryItem name below to enable the use of older kernel aware
|
||
debuggers. */
|
||
typedef xQueueRegistryItem QueueRegistryItem_t;
|
||
|
||
/* The queue registry is simply an array of QueueRegistryItem_t structures.
|
||
The pcQueueName member of a structure being NULL is indicative of the
|
||
array position being vacant. */
|
||
PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
|
||
|
||
#endif /* configQUEUE_REGISTRY_SIZE */
|
||
|
||
/*
|
||
* Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
|
||
* prevent an ISR from adding or removing items to the queue, but does prevent
|
||
* an ISR from removing tasks from the queue event lists. If an ISR finds a
|
||
* queue is locked it will instead increment the appropriate queue lock count
|
||
* to indicate that a task may require unblocking. When the queue in unlocked
|
||
* these lock counts are inspected, and the appropriate action taken.
|
||
*/
|
||
static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
|
||
|
||
/*
|
||
* Uses a critical section to determine if there is any data in a queue.
|
||
*
|
||
* @return pdTRUE if the queue contains no items, otherwise pdFALSE.
|
||
*/
|
||
static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION;
|
||
|
||
/*
|
||
* Uses a critical section to determine if there is any space in a queue.
|
||
*
|
||
* @return pdTRUE if there is no space, otherwise pdFALSE;
|
||
*/
|
||
static BaseType_t prvIsQueueFull( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION;
|
||
|
||
/*
|
||
* Copies an item into the queue, either at the front of the queue or the
|
||
* back of the queue.
|
||
*/
|
||
static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
|
||
|
||
/*
|
||
* Copies an item out of a queue.
|
||
*/
|
||
static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION;
|
||
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
/*
|
||
* Checks to see if a queue is a member of a queue set, and if so, notifies
|
||
* the queue set that the queue contains data.
|
||
*/
|
||
static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
|
||
#endif
|
||
|
||
/*
|
||
* Called after a Queue_t structure has been allocated either statically or
|
||
* dynamically to fill in the structure's members.
|
||
*/
|
||
static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue ) PRIVILEGED_FUNCTION;
|
||
|
||
/*
|
||
* Mutexes are a special type of queue. When a mutex is created, first the
|
||
* queue is created, then prvInitialiseMutex() is called to configure the queue
|
||
* as a mutex.
|
||
*/
|
||
#if( configUSE_MUTEXES == 1 )
|
||
static void prvInitialiseMutex( Queue_t *pxNewQueue ) PRIVILEGED_FUNCTION;
|
||
#endif
|
||
|
||
/*-----------------------------------------------------------*/
|
||
|
||
/*
|
||
* Macro to mark a queue as locked. Locking a queue prevents an ISR from
|
||
* accessing the queue event lists.
|
||
*/
|
||
#define prvLockQueue( pxQueue ) \
|
||
taskENTER_CRITICAL(); \
|
||
{ \
|
||
if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
|
||
{ \
|
||
( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
|
||
} \
|
||
if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
|
||
{ \
|
||
( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
|
||
} \
|
||
} \
|
||
taskEXIT_CRITICAL()
|
||
/*-----------------------------------------------------------*/
|
||
|
||
BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue )
|
||
{
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
configASSERT( pxQueue );
|
||
|
||
taskENTER_CRITICAL();
|
||
{
|
||
pxQueue->pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize );
|
||
pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
|
||
pxQueue->pcWriteTo = pxQueue->pcHead;
|
||
pxQueue->u.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - ( UBaseType_t ) 1U ) * pxQueue->uxItemSize );
|
||
pxQueue->cRxLock = queueUNLOCKED;
|
||
pxQueue->cTxLock = queueUNLOCKED;
|
||
|
||
if( xNewQueue == pdFALSE )
|
||
{
|
||
/* If there are tasks blocked waiting to read from the queue, then
|
||
the tasks will remain blocked as after this function exits the queue
|
||
will still be empty. If there are tasks blocked waiting to write to
|
||
the queue, then one should be unblocked as after this function exits
|
||
it will be possible to write to it. */
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
|
||
{
|
||
queueYIELD_IF_USING_PREEMPTION();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Ensure the event queues start in the correct state. */
|
||
vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
|
||
vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
|
||
}
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
|
||
/* A value is returned for calling semantic consistency with previous
|
||
versions. */
|
||
return pdPASS;
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
|
||
|
||
QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType )
|
||
{
|
||
Queue_t *pxNewQueue;
|
||
|
||
configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
|
||
|
||
/* The StaticQueue_t structure and the queue storage area must be
|
||
supplied. */
|
||
configASSERT( pxStaticQueue != NULL );
|
||
|
||
/* A queue storage area should be provided if the item size is not 0, and
|
||
should not be provided if the item size is 0. */
|
||
configASSERT( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) );
|
||
configASSERT( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) );
|
||
|
||
#if( configASSERT_DEFINED == 1 )
|
||
{
|
||
/* Sanity check that the size of the structure used to declare a
|
||
variable of type StaticQueue_t or StaticSemaphore_t equals the size of
|
||
the real queue and semaphore structures. */
|
||
volatile size_t xSize = sizeof( StaticQueue_t );
|
||
configASSERT( xSize == sizeof( Queue_t ) );
|
||
}
|
||
#endif /* configASSERT_DEFINED */
|
||
|
||
/* The address of a statically allocated queue was passed in, use it.
|
||
The address of a statically allocated storage area was also passed in
|
||
but is already set. */
|
||
pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
|
||
|
||
if( pxNewQueue != NULL )
|
||
{
|
||
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
|
||
{
|
||
/* Queues can be allocated wither statically or dynamically, so
|
||
note this queue was allocated statically in case the queue is
|
||
later deleted. */
|
||
pxNewQueue->ucStaticallyAllocated = pdTRUE;
|
||
}
|
||
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
|
||
|
||
prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
|
||
}
|
||
|
||
return pxNewQueue;
|
||
}
|
||
|
||
#endif /* configSUPPORT_STATIC_ALLOCATION */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
|
||
|
||
QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType )
|
||
{
|
||
Queue_t *pxNewQueue;
|
||
size_t xQueueSizeInBytes;
|
||
uint8_t *pucQueueStorage;
|
||
|
||
configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
|
||
|
||
if( uxItemSize == ( UBaseType_t ) 0 )
|
||
{
|
||
/* There is not going to be a queue storage area. */
|
||
xQueueSizeInBytes = ( size_t ) 0;
|
||
}
|
||
else
|
||
{
|
||
/* Allocate enough space to hold the maximum number of items that
|
||
can be in the queue at any time. */
|
||
xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
||
}
|
||
|
||
pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes );
|
||
|
||
if( pxNewQueue != NULL )
|
||
{
|
||
/* Jump past the queue structure to find the location of the queue
|
||
storage area. */
|
||
pucQueueStorage = ( ( uint8_t * ) pxNewQueue ) + sizeof( Queue_t );
|
||
|
||
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
|
||
{
|
||
/* Queues can be created either statically or dynamically, so
|
||
note this task was created dynamically in case it is later
|
||
deleted. */
|
||
pxNewQueue->ucStaticallyAllocated = pdFALSE;
|
||
}
|
||
#endif /* configSUPPORT_STATIC_ALLOCATION */
|
||
|
||
prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
|
||
}
|
||
|
||
return pxNewQueue;
|
||
}
|
||
|
||
#endif /* configSUPPORT_STATIC_ALLOCATION */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue )
|
||
{
|
||
/* Remove compiler warnings about unused parameters should
|
||
configUSE_TRACE_FACILITY not be set to 1. */
|
||
( void ) ucQueueType;
|
||
|
||
if( uxItemSize == ( UBaseType_t ) 0 )
|
||
{
|
||
/* No RAM was allocated for the queue storage area, but PC head cannot
|
||
be set to NULL because NULL is used as a key to say the queue is used as
|
||
a mutex. Therefore just set pcHead to point to the queue as a benign
|
||
value that is known to be within the memory map. */
|
||
pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
|
||
}
|
||
else
|
||
{
|
||
/* Set the head to the start of the queue storage area. */
|
||
pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
|
||
}
|
||
|
||
/* Initialise the queue members as described where the queue type is
|
||
defined. */
|
||
pxNewQueue->uxLength = uxQueueLength;
|
||
pxNewQueue->uxItemSize = uxItemSize;
|
||
( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
|
||
|
||
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
{
|
||
pxNewQueue->ucQueueType = ucQueueType;
|
||
}
|
||
#endif /* configUSE_TRACE_FACILITY */
|
||
|
||
#if( configUSE_QUEUE_SETS == 1 )
|
||
{
|
||
pxNewQueue->pxQueueSetContainer = NULL;
|
||
}
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
|
||
traceQUEUE_CREATE( pxNewQueue );
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if( configUSE_MUTEXES == 1 )
|
||
|
||
static void prvInitialiseMutex( Queue_t *pxNewQueue )
|
||
{
|
||
if( pxNewQueue != NULL )
|
||
{
|
||
/* The queue create function will set all the queue structure members
|
||
correctly for a generic queue, but this function is creating a
|
||
mutex. Overwrite those members that need to be set differently -
|
||
in particular the information required for priority inheritance. */
|
||
pxNewQueue->pxMutexHolder = NULL;
|
||
pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
|
||
|
||
/* In case this is a recursive mutex. */
|
||
pxNewQueue->u.uxRecursiveCallCount = 0;
|
||
|
||
traceCREATE_MUTEX( pxNewQueue );
|
||
|
||
/* Start with the semaphore in the expected state. */
|
||
( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
|
||
}
|
||
else
|
||
{
|
||
traceCREATE_MUTEX_FAILED();
|
||
}
|
||
}
|
||
|
||
#endif /* configUSE_MUTEXES */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
||
|
||
QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
|
||
{
|
||
Queue_t *pxNewQueue;
|
||
const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
|
||
|
||
pxNewQueue = ( Queue_t * ) xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
|
||
prvInitialiseMutex( pxNewQueue );
|
||
|
||
return pxNewQueue;
|
||
}
|
||
|
||
#endif /* configUSE_MUTEXES */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
|
||
|
||
QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue )
|
||
{
|
||
Queue_t *pxNewQueue;
|
||
const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
|
||
|
||
/* Prevent compiler warnings about unused parameters if
|
||
configUSE_TRACE_FACILITY does not equal 1. */
|
||
( void ) ucQueueType;
|
||
|
||
pxNewQueue = ( Queue_t * ) xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
|
||
prvInitialiseMutex( pxNewQueue );
|
||
|
||
return pxNewQueue;
|
||
}
|
||
|
||
#endif /* configUSE_MUTEXES */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
|
||
|
||
void* xQueueGetMutexHolder( QueueHandle_t xSemaphore )
|
||
{
|
||
void *pxReturn;
|
||
|
||
/* This function is called by xSemaphoreGetMutexHolder(), and should not
|
||
be called directly. Note: This is a good way of determining if the
|
||
calling task is the mutex holder, but not a good way of determining the
|
||
identity of the mutex holder, as the holder may change between the
|
||
following critical section exiting and the function returning. */
|
||
taskENTER_CRITICAL();
|
||
{
|
||
if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
|
||
{
|
||
pxReturn = ( void * ) ( ( Queue_t * ) xSemaphore )->pxMutexHolder;
|
||
}
|
||
else
|
||
{
|
||
pxReturn = NULL;
|
||
}
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
|
||
return pxReturn;
|
||
} /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
|
||
|
||
#endif
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_RECURSIVE_MUTEXES == 1 )
|
||
|
||
BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
|
||
{
|
||
BaseType_t xReturn;
|
||
Queue_t * const pxMutex = ( Queue_t * ) xMutex;
|
||
|
||
configASSERT( pxMutex );
|
||
|
||
/* If this is the task that holds the mutex then pxMutexHolder will not
|
||
change outside of this task. If this task does not hold the mutex then
|
||
pxMutexHolder can never coincidentally equal the tasks handle, and as
|
||
this is the only condition we are interested in it does not matter if
|
||
pxMutexHolder is accessed simultaneously by another task. Therefore no
|
||
mutual exclusion is required to test the pxMutexHolder variable. */
|
||
if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Not a redundant cast as TaskHandle_t is a typedef. */
|
||
{
|
||
traceGIVE_MUTEX_RECURSIVE( pxMutex );
|
||
|
||
/* uxRecursiveCallCount cannot be zero if pxMutexHolder is equal to
|
||
the task handle, therefore no underflow check is required. Also,
|
||
uxRecursiveCallCount is only modified by the mutex holder, and as
|
||
there can only be one, no mutual exclusion is required to modify the
|
||
uxRecursiveCallCount member. */
|
||
( pxMutex->u.uxRecursiveCallCount )--;
|
||
|
||
/* Has the recursive call count unwound to 0? */
|
||
if( pxMutex->u.uxRecursiveCallCount == ( UBaseType_t ) 0 )
|
||
{
|
||
/* Return the mutex. This will automatically unblock any other
|
||
task that might be waiting to access the mutex. */
|
||
( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
|
||
xReturn = pdPASS;
|
||
}
|
||
else
|
||
{
|
||
/* The mutex cannot be given because the calling task is not the
|
||
holder. */
|
||
xReturn = pdFAIL;
|
||
|
||
traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
|
||
}
|
||
|
||
return xReturn;
|
||
}
|
||
|
||
#endif /* configUSE_RECURSIVE_MUTEXES */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_RECURSIVE_MUTEXES == 1 )
|
||
|
||
BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait )
|
||
{
|
||
BaseType_t xReturn;
|
||
Queue_t * const pxMutex = ( Queue_t * ) xMutex;
|
||
|
||
configASSERT( pxMutex );
|
||
|
||
/* Comments regarding mutual exclusion as per those within
|
||
xQueueGiveMutexRecursive(). */
|
||
|
||
traceTAKE_MUTEX_RECURSIVE( pxMutex );
|
||
|
||
if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */
|
||
{
|
||
( pxMutex->u.uxRecursiveCallCount )++;
|
||
xReturn = pdPASS;
|
||
}
|
||
else
|
||
{
|
||
xReturn = xQueueGenericReceive( pxMutex, NULL, xTicksToWait, pdFALSE );
|
||
|
||
/* pdPASS will only be returned if the mutex was successfully
|
||
obtained. The calling task may have entered the Blocked state
|
||
before reaching here. */
|
||
if( xReturn != pdFAIL )
|
||
{
|
||
( pxMutex->u.uxRecursiveCallCount )++;
|
||
}
|
||
else
|
||
{
|
||
traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
|
||
}
|
||
}
|
||
|
||
return xReturn;
|
||
}
|
||
|
||
#endif /* configUSE_RECURSIVE_MUTEXES */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
|
||
|
||
QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue )
|
||
{
|
||
QueueHandle_t xHandle;
|
||
|
||
configASSERT( uxMaxCount != 0 );
|
||
configASSERT( uxInitialCount <= uxMaxCount );
|
||
|
||
xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
|
||
|
||
if( xHandle != NULL )
|
||
{
|
||
( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
|
||
|
||
traceCREATE_COUNTING_SEMAPHORE();
|
||
}
|
||
else
|
||
{
|
||
traceCREATE_COUNTING_SEMAPHORE_FAILED();
|
||
}
|
||
|
||
return xHandle;
|
||
}
|
||
|
||
#endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
||
|
||
QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount )
|
||
{
|
||
QueueHandle_t xHandle;
|
||
|
||
configASSERT( uxMaxCount != 0 );
|
||
configASSERT( uxInitialCount <= uxMaxCount );
|
||
|
||
xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
|
||
|
||
if( xHandle != NULL )
|
||
{
|
||
( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
|
||
|
||
traceCREATE_COUNTING_SEMAPHORE();
|
||
}
|
||
else
|
||
{
|
||
traceCREATE_COUNTING_SEMAPHORE_FAILED();
|
||
}
|
||
|
||
return xHandle;
|
||
}
|
||
|
||
#endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition )
|
||
{
|
||
BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
|
||
TimeOut_t xTimeOut;
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
configASSERT( pxQueue );
|
||
configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
||
configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
|
||
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
|
||
{
|
||
configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
|
||
}
|
||
#endif
|
||
|
||
|
||
/* This function relaxes the coding standard somewhat to allow return
|
||
statements within the function itself. This is done in the interest
|
||
of execution time efficiency. */
|
||
for( ;; )
|
||
{
|
||
taskENTER_CRITICAL();
|
||
{
|
||
/* Is there room on the queue now? The running task must be the
|
||
highest priority task wanting to access the queue. If the head item
|
||
in the queue is to be overwritten then it does not matter if the
|
||
queue is full. */
|
||
if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
|
||
{
|
||
traceQUEUE_SEND( pxQueue );
|
||
xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
|
||
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
{
|
||
if( pxQueue->pxQueueSetContainer != NULL )
|
||
{
|
||
if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE )
|
||
{
|
||
/* The queue is a member of a queue set, and posting
|
||
to the queue set caused a higher priority task to
|
||
unblock. A context switch is required. */
|
||
queueYIELD_IF_USING_PREEMPTION();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If there was a task waiting for data to arrive on the
|
||
queue then unblock it now. */
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The unblocked task has a priority higher than
|
||
our own so yield immediately. Yes it is ok to
|
||
do this from within the critical section - the
|
||
kernel takes care of that. */
|
||
queueYIELD_IF_USING_PREEMPTION();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else if( xYieldRequired != pdFALSE )
|
||
{
|
||
/* This path is a special case that will only get
|
||
executed if the task was holding multiple mutexes
|
||
and the mutexes were given back in an order that is
|
||
different to that in which they were taken. */
|
||
queueYIELD_IF_USING_PREEMPTION();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
}
|
||
#else /* configUSE_QUEUE_SETS */
|
||
{
|
||
/* If there was a task waiting for data to arrive on the
|
||
queue then unblock it now. */
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The unblocked task has a priority higher than
|
||
our own so yield immediately. Yes it is ok to do
|
||
this from within the critical section - the kernel
|
||
takes care of that. */
|
||
queueYIELD_IF_USING_PREEMPTION();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else if( xYieldRequired != pdFALSE )
|
||
{
|
||
/* This path is a special case that will only get
|
||
executed if the task was holding multiple mutexes and
|
||
the mutexes were given back in an order that is
|
||
different to that in which they were taken. */
|
||
queueYIELD_IF_USING_PREEMPTION();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
|
||
taskEXIT_CRITICAL();
|
||
return pdPASS;
|
||
}
|
||
else
|
||
{
|
||
if( xTicksToWait == ( TickType_t ) 0 )
|
||
{
|
||
/* The queue was full and no block time is specified (or
|
||
the block time has expired) so leave now. */
|
||
taskEXIT_CRITICAL();
|
||
|
||
/* Return to the original privilege level before exiting
|
||
the function. */
|
||
traceQUEUE_SEND_FAILED( pxQueue );
|
||
return errQUEUE_FULL;
|
||
}
|
||
else if( xEntryTimeSet == pdFALSE )
|
||
{
|
||
/* The queue was full and a block time was specified so
|
||
configure the timeout structure. */
|
||
vTaskSetTimeOutState( &xTimeOut );
|
||
xEntryTimeSet = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
/* Entry time was already set. */
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
|
||
/* Interrupts and other tasks can send to and receive from the queue
|
||
now the critical section has been exited. */
|
||
|
||
vTaskSuspendAll();
|
||
prvLockQueue( pxQueue );
|
||
|
||
/* Update the timeout state to see if it has expired yet. */
|
||
if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
|
||
{
|
||
if( prvIsQueueFull( pxQueue ) != pdFALSE )
|
||
{
|
||
traceBLOCKING_ON_QUEUE_SEND( pxQueue );
|
||
vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
|
||
|
||
/* Unlocking the queue means queue events can effect the
|
||
event list. It is possible that interrupts occurring now
|
||
remove this task from the event list again - but as the
|
||
scheduler is suspended the task will go onto the pending
|
||
ready last instead of the actual ready list. */
|
||
prvUnlockQueue( pxQueue );
|
||
|
||
/* Resuming the scheduler will move tasks from the pending
|
||
ready list into the ready list - so it is feasible that this
|
||
task is already in a ready list before it yields - in which
|
||
case the yield will not cause a context switch unless there
|
||
is also a higher priority task in the pending ready list. */
|
||
if( xTaskResumeAll() == pdFALSE )
|
||
{
|
||
portYIELD_WITHIN_API();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Try again. */
|
||
prvUnlockQueue( pxQueue );
|
||
( void ) xTaskResumeAll();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* The timeout has expired. */
|
||
prvUnlockQueue( pxQueue );
|
||
( void ) xTaskResumeAll();
|
||
|
||
traceQUEUE_SEND_FAILED( pxQueue );
|
||
return errQUEUE_FULL;
|
||
}
|
||
}
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition )
|
||
{
|
||
BaseType_t xReturn;
|
||
UBaseType_t uxSavedInterruptStatus;
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
configASSERT( pxQueue );
|
||
configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
||
configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
|
||
|
||
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
||
system call (or maximum API call) interrupt priority. Interrupts that are
|
||
above the maximum system call priority are kept permanently enabled, even
|
||
when the RTOS kernel is in a critical section, but cannot make any calls to
|
||
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
||
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
||
failure if a FreeRTOS API function is called from an interrupt that has been
|
||
assigned a priority above the configured maximum system call priority.
|
||
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
||
that have been assigned a priority at or (logically) below the maximum
|
||
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
||
safe API to ensure interrupt entry is as fast and as simple as possible.
|
||
More information (albeit Cortex-M specific) is provided on the following
|
||
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
||
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
||
|
||
/* Similar to xQueueGenericSend, except without blocking if there is no room
|
||
in the queue. Also don't directly wake a task that was blocked on a queue
|
||
read, instead return a flag to say whether a context switch is required or
|
||
not (i.e. has a task with a higher priority than us been woken by this
|
||
post). */
|
||
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
||
{
|
||
if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
|
||
{
|
||
const int8_t cTxLock = pxQueue->cTxLock;
|
||
|
||
traceQUEUE_SEND_FROM_ISR( pxQueue );
|
||
|
||
/* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
|
||
semaphore or mutex. That means prvCopyDataToQueue() cannot result
|
||
in a task disinheriting a priority and prvCopyDataToQueue() can be
|
||
called here even though the disinherit function does not check if
|
||
the scheduler is suspended before accessing the ready lists. */
|
||
( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
|
||
|
||
/* The event list is not altered if the queue is locked. This will
|
||
be done when the queue is unlocked later. */
|
||
if( cTxLock == queueUNLOCKED )
|
||
{
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
{
|
||
if( pxQueue->pxQueueSetContainer != NULL )
|
||
{
|
||
if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE )
|
||
{
|
||
/* The queue is a member of a queue set, and posting
|
||
to the queue set caused a higher priority task to
|
||
unblock. A context switch is required. */
|
||
if( pxHigherPriorityTaskWoken != NULL )
|
||
{
|
||
*pxHigherPriorityTaskWoken = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The task waiting has a higher priority so
|
||
record that a context switch is required. */
|
||
if( pxHigherPriorityTaskWoken != NULL )
|
||
{
|
||
*pxHigherPriorityTaskWoken = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
}
|
||
#else /* configUSE_QUEUE_SETS */
|
||
{
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The task waiting has a higher priority so record that a
|
||
context switch is required. */
|
||
if( pxHigherPriorityTaskWoken != NULL )
|
||
{
|
||
*pxHigherPriorityTaskWoken = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
}
|
||
else
|
||
{
|
||
/* Increment the lock count so the task that unlocks the queue
|
||
knows that data was posted while it was locked. */
|
||
pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
|
||
}
|
||
|
||
xReturn = pdPASS;
|
||
}
|
||
else
|
||
{
|
||
traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
|
||
xReturn = errQUEUE_FULL;
|
||
}
|
||
}
|
||
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
||
|
||
return xReturn;
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken )
|
||
{
|
||
BaseType_t xReturn;
|
||
UBaseType_t uxSavedInterruptStatus;
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
/* Similar to xQueueGenericSendFromISR() but used with semaphores where the
|
||
item size is 0. Don't directly wake a task that was blocked on a queue
|
||
read, instead return a flag to say whether a context switch is required or
|
||
not (i.e. has a task with a higher priority than us been woken by this
|
||
post). */
|
||
|
||
configASSERT( pxQueue );
|
||
|
||
/* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
|
||
if the item size is not 0. */
|
||
configASSERT( pxQueue->uxItemSize == 0 );
|
||
|
||
/* Normally a mutex would not be given from an interrupt, especially if
|
||
there is a mutex holder, as priority inheritance makes no sense for an
|
||
interrupts, only tasks. */
|
||
configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->pxMutexHolder != NULL ) ) );
|
||
|
||
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
||
system call (or maximum API call) interrupt priority. Interrupts that are
|
||
above the maximum system call priority are kept permanently enabled, even
|
||
when the RTOS kernel is in a critical section, but cannot make any calls to
|
||
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
||
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
||
failure if a FreeRTOS API function is called from an interrupt that has been
|
||
assigned a priority above the configured maximum system call priority.
|
||
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
||
that have been assigned a priority at or (logically) below the maximum
|
||
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
||
safe API to ensure interrupt entry is as fast and as simple as possible.
|
||
More information (albeit Cortex-M specific) is provided on the following
|
||
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
||
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
||
|
||
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
||
{
|
||
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
|
||
|
||
/* When the queue is used to implement a semaphore no data is ever
|
||
moved through the queue but it is still valid to see if the queue 'has
|
||
space'. */
|
||
if( uxMessagesWaiting < pxQueue->uxLength )
|
||
{
|
||
const int8_t cTxLock = pxQueue->cTxLock;
|
||
|
||
traceQUEUE_SEND_FROM_ISR( pxQueue );
|
||
|
||
/* A task can only have an inherited priority if it is a mutex
|
||
holder - and if there is a mutex holder then the mutex cannot be
|
||
given from an ISR. As this is the ISR version of the function it
|
||
can be assumed there is no mutex holder and no need to determine if
|
||
priority disinheritance is needed. Simply increase the count of
|
||
messages (semaphores) available. */
|
||
pxQueue->uxMessagesWaiting = uxMessagesWaiting + 1;
|
||
|
||
/* The event list is not altered if the queue is locked. This will
|
||
be done when the queue is unlocked later. */
|
||
if( cTxLock == queueUNLOCKED )
|
||
{
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
{
|
||
if( pxQueue->pxQueueSetContainer != NULL )
|
||
{
|
||
if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE )
|
||
{
|
||
/* The semaphore is a member of a queue set, and
|
||
posting to the queue set caused a higher priority
|
||
task to unblock. A context switch is required. */
|
||
if( pxHigherPriorityTaskWoken != NULL )
|
||
{
|
||
*pxHigherPriorityTaskWoken = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The task waiting has a higher priority so
|
||
record that a context switch is required. */
|
||
if( pxHigherPriorityTaskWoken != NULL )
|
||
{
|
||
*pxHigherPriorityTaskWoken = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
}
|
||
#else /* configUSE_QUEUE_SETS */
|
||
{
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The task waiting has a higher priority so record that a
|
||
context switch is required. */
|
||
if( pxHigherPriorityTaskWoken != NULL )
|
||
{
|
||
*pxHigherPriorityTaskWoken = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
}
|
||
else
|
||
{
|
||
/* Increment the lock count so the task that unlocks the queue
|
||
knows that data was posted while it was locked. */
|
||
pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
|
||
}
|
||
|
||
xReturn = pdPASS;
|
||
}
|
||
else
|
||
{
|
||
traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
|
||
xReturn = errQUEUE_FULL;
|
||
}
|
||
}
|
||
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
||
|
||
return xReturn;
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
BaseType_t xQueueGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeeking )
|
||
{
|
||
BaseType_t xEntryTimeSet = pdFALSE;
|
||
TimeOut_t xTimeOut;
|
||
int8_t *pcOriginalReadPosition;
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
configASSERT( pxQueue );
|
||
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
||
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
|
||
{
|
||
configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
|
||
}
|
||
#endif
|
||
|
||
/* This function relaxes the coding standard somewhat to allow return
|
||
statements within the function itself. This is done in the interest
|
||
of execution time efficiency. */
|
||
|
||
for( ;; )
|
||
{
|
||
taskENTER_CRITICAL();
|
||
{
|
||
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
|
||
|
||
/* Is there data in the queue now? To be running the calling task
|
||
must be the highest priority task wanting to access the queue. */
|
||
if( uxMessagesWaiting > ( UBaseType_t ) 0 )
|
||
{
|
||
/* Remember the read position in case the queue is only being
|
||
peeked. */
|
||
pcOriginalReadPosition = pxQueue->u.pcReadFrom;
|
||
|
||
prvCopyDataFromQueue( pxQueue, pvBuffer );
|
||
|
||
if( xJustPeeking == pdFALSE )
|
||
{
|
||
traceQUEUE_RECEIVE( pxQueue );
|
||
|
||
/* Actually removing data, not just peeking. */
|
||
pxQueue->uxMessagesWaiting = uxMessagesWaiting - 1;
|
||
|
||
#if ( configUSE_MUTEXES == 1 )
|
||
{
|
||
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
|
||
{
|
||
/* Record the information required to implement
|
||
priority inheritance should it become necessary. */
|
||
pxQueue->pxMutexHolder = ( int8_t * ) pvTaskIncrementMutexHeldCount(); /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
#endif /* configUSE_MUTEXES */
|
||
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
|
||
{
|
||
queueYIELD_IF_USING_PREEMPTION();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
traceQUEUE_PEEK( pxQueue );
|
||
|
||
/* The data is not being removed, so reset the read
|
||
pointer. */
|
||
pxQueue->u.pcReadFrom = pcOriginalReadPosition;
|
||
|
||
/* The data is being left in the queue, so see if there are
|
||
any other tasks waiting for the data. */
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The task waiting has a higher priority than this task. */
|
||
queueYIELD_IF_USING_PREEMPTION();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
|
||
taskEXIT_CRITICAL();
|
||
return pdPASS;
|
||
}
|
||
else
|
||
{
|
||
if( xTicksToWait == ( TickType_t ) 0 )
|
||
{
|
||
/* The queue was empty and no block time is specified (or
|
||
the block time has expired) so leave now. */
|
||
taskEXIT_CRITICAL();
|
||
traceQUEUE_RECEIVE_FAILED( pxQueue );
|
||
return errQUEUE_EMPTY;
|
||
}
|
||
else if( xEntryTimeSet == pdFALSE )
|
||
{
|
||
/* The queue was empty and a block time was specified so
|
||
configure the timeout structure. */
|
||
vTaskSetTimeOutState( &xTimeOut );
|
||
xEntryTimeSet = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
/* Entry time was already set. */
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
|
||
/* Interrupts and other tasks can send to and receive from the queue
|
||
now the critical section has been exited. */
|
||
|
||
vTaskSuspendAll();
|
||
prvLockQueue( pxQueue );
|
||
|
||
/* Update the timeout state to see if it has expired yet. */
|
||
if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
|
||
{
|
||
if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
|
||
{
|
||
traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
|
||
|
||
#if ( configUSE_MUTEXES == 1 )
|
||
{
|
||
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
|
||
{
|
||
taskENTER_CRITICAL();
|
||
{
|
||
vTaskPriorityInherit( ( void * ) pxQueue->pxMutexHolder );
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
#endif
|
||
|
||
vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
|
||
prvUnlockQueue( pxQueue );
|
||
if( xTaskResumeAll() == pdFALSE )
|
||
{
|
||
portYIELD_WITHIN_API();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Try again. */
|
||
prvUnlockQueue( pxQueue );
|
||
( void ) xTaskResumeAll();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
prvUnlockQueue( pxQueue );
|
||
( void ) xTaskResumeAll();
|
||
|
||
if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
|
||
{
|
||
traceQUEUE_RECEIVE_FAILED( pxQueue );
|
||
return errQUEUE_EMPTY;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken )
|
||
{
|
||
BaseType_t xReturn;
|
||
UBaseType_t uxSavedInterruptStatus;
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
configASSERT( pxQueue );
|
||
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
||
|
||
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
||
system call (or maximum API call) interrupt priority. Interrupts that are
|
||
above the maximum system call priority are kept permanently enabled, even
|
||
when the RTOS kernel is in a critical section, but cannot make any calls to
|
||
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
||
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
||
failure if a FreeRTOS API function is called from an interrupt that has been
|
||
assigned a priority above the configured maximum system call priority.
|
||
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
||
that have been assigned a priority at or (logically) below the maximum
|
||
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
||
safe API to ensure interrupt entry is as fast and as simple as possible.
|
||
More information (albeit Cortex-M specific) is provided on the following
|
||
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
||
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
||
|
||
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
||
{
|
||
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
|
||
|
||
/* Cannot block in an ISR, so check there is data available. */
|
||
if( uxMessagesWaiting > ( UBaseType_t ) 0 )
|
||
{
|
||
const int8_t cRxLock = pxQueue->cRxLock;
|
||
|
||
traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
|
||
|
||
prvCopyDataFromQueue( pxQueue, pvBuffer );
|
||
pxQueue->uxMessagesWaiting = uxMessagesWaiting - 1;
|
||
|
||
/* If the queue is locked the event list will not be modified.
|
||
Instead update the lock count so the task that unlocks the queue
|
||
will know that an ISR has removed data while the queue was
|
||
locked. */
|
||
if( cRxLock == queueUNLOCKED )
|
||
{
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
|
||
{
|
||
/* The task waiting has a higher priority than us so
|
||
force a context switch. */
|
||
if( pxHigherPriorityTaskWoken != NULL )
|
||
{
|
||
*pxHigherPriorityTaskWoken = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Increment the lock count so the task that unlocks the queue
|
||
knows that data was removed while it was locked. */
|
||
pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 );
|
||
}
|
||
|
||
xReturn = pdPASS;
|
||
}
|
||
else
|
||
{
|
||
xReturn = pdFAIL;
|
||
traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
|
||
}
|
||
}
|
||
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
||
|
||
return xReturn;
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer )
|
||
{
|
||
BaseType_t xReturn;
|
||
UBaseType_t uxSavedInterruptStatus;
|
||
int8_t *pcOriginalReadPosition;
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
configASSERT( pxQueue );
|
||
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
||
configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
|
||
|
||
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
||
system call (or maximum API call) interrupt priority. Interrupts that are
|
||
above the maximum system call priority are kept permanently enabled, even
|
||
when the RTOS kernel is in a critical section, but cannot make any calls to
|
||
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
||
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
||
failure if a FreeRTOS API function is called from an interrupt that has been
|
||
assigned a priority above the configured maximum system call priority.
|
||
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
||
that have been assigned a priority at or (logically) below the maximum
|
||
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
||
safe API to ensure interrupt entry is as fast and as simple as possible.
|
||
More information (albeit Cortex-M specific) is provided on the following
|
||
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
||
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
||
|
||
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
||
{
|
||
/* Cannot block in an ISR, so check there is data available. */
|
||
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
|
||
{
|
||
traceQUEUE_PEEK_FROM_ISR( pxQueue );
|
||
|
||
/* Remember the read position so it can be reset as nothing is
|
||
actually being removed from the queue. */
|
||
pcOriginalReadPosition = pxQueue->u.pcReadFrom;
|
||
prvCopyDataFromQueue( pxQueue, pvBuffer );
|
||
pxQueue->u.pcReadFrom = pcOriginalReadPosition;
|
||
|
||
xReturn = pdPASS;
|
||
}
|
||
else
|
||
{
|
||
xReturn = pdFAIL;
|
||
traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
|
||
}
|
||
}
|
||
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
||
|
||
return xReturn;
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
|
||
{
|
||
UBaseType_t uxReturn;
|
||
|
||
configASSERT( xQueue );
|
||
|
||
taskENTER_CRITICAL();
|
||
{
|
||
uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
|
||
return uxReturn;
|
||
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
|
||
{
|
||
UBaseType_t uxReturn;
|
||
Queue_t *pxQueue;
|
||
|
||
pxQueue = ( Queue_t * ) xQueue;
|
||
configASSERT( pxQueue );
|
||
|
||
taskENTER_CRITICAL();
|
||
{
|
||
uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
|
||
return uxReturn;
|
||
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
|
||
{
|
||
UBaseType_t uxReturn;
|
||
|
||
configASSERT( xQueue );
|
||
|
||
uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
|
||
|
||
return uxReturn;
|
||
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
void vQueueDelete( QueueHandle_t xQueue )
|
||
{
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
configASSERT( pxQueue );
|
||
traceQUEUE_DELETE( pxQueue );
|
||
|
||
#if ( configQUEUE_REGISTRY_SIZE > 0 )
|
||
{
|
||
vQueueUnregisterQueue( pxQueue );
|
||
}
|
||
#endif
|
||
|
||
#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
|
||
{
|
||
/* The queue can only have been allocated dynamically - free it
|
||
again. */
|
||
vPortFree( pxQueue );
|
||
}
|
||
#elif( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
|
||
{
|
||
/* The queue could have been allocated statically or dynamically, so
|
||
check before attempting to free the memory. */
|
||
if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
|
||
{
|
||
vPortFree( pxQueue );
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
#else
|
||
{
|
||
/* The queue must have been statically allocated, so is not going to be
|
||
deleted. Avoid compiler warnings about the unused parameter. */
|
||
( void ) pxQueue;
|
||
}
|
||
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
|
||
UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
|
||
{
|
||
return ( ( Queue_t * ) xQueue )->uxQueueNumber;
|
||
}
|
||
|
||
#endif /* configUSE_TRACE_FACILITY */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
|
||
void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber )
|
||
{
|
||
( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
|
||
}
|
||
|
||
#endif /* configUSE_TRACE_FACILITY */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
|
||
uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
|
||
{
|
||
return ( ( Queue_t * ) xQueue )->ucQueueType;
|
||
}
|
||
|
||
#endif /* configUSE_TRACE_FACILITY */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition )
|
||
{
|
||
BaseType_t xReturn = pdFALSE;
|
||
UBaseType_t uxMessagesWaiting;
|
||
|
||
/* This function is called from a critical section. */
|
||
|
||
uxMessagesWaiting = pxQueue->uxMessagesWaiting;
|
||
|
||
if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
|
||
{
|
||
#if ( configUSE_MUTEXES == 1 )
|
||
{
|
||
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) //<2F><><EFBFBD><EFBFBD><EFBFBD>ǻ<EFBFBD><C7BB><EFBFBD><EFBFBD>ź<EFBFBD>
|
||
{
|
||
/* The mutex is no longer being held. */
|
||
xReturn = xTaskPriorityDisinherit( ( void * ) pxQueue->pxMutexHolder ); //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ź<EFBFBD><C5BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȼ<EFBFBD><C8BC>̳<EFBFBD><CCB3><EFBFBD><EFBFBD><EFBFBD>
|
||
pxQueue->pxMutexHolder = NULL; //<2F><><EFBFBD><EFBFBD><EFBFBD>ź<EFBFBD><C5BA><EFBFBD><EFBFBD>ͷ<EFBFBD><CDB7>Ժ<D4BA><F3A3ACBB><EFBFBD><EFBFBD>ź<EFBFBD><C5BA><EFBFBD><EFBFBD>Ͳ<EFBFBD><CDB2><EFBFBD><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><CEBA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ˣ<EFBFBD><CBA3><EFBFBD><EFBFBD><EFBFBD>pxQueue->pxMutexHolderҪָ<D2AA><D6B8>MULL
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
#endif /* configUSE_MUTEXES */
|
||
}
|
||
else if( xPosition == queueSEND_TO_BACK )
|
||
{
|
||
( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. */
|
||
pxQueue->pcWriteTo += pxQueue->uxItemSize;
|
||
if( pxQueue->pcWriteTo >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
|
||
{
|
||
pxQueue->pcWriteTo = pxQueue->pcHead;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
( void ) memcpy( ( void * ) pxQueue->u.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
||
pxQueue->u.pcReadFrom -= pxQueue->uxItemSize;
|
||
if( pxQueue->u.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
|
||
{
|
||
pxQueue->u.pcReadFrom = ( pxQueue->pcTail - pxQueue->uxItemSize );
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
|
||
if( xPosition == queueOVERWRITE )
|
||
{
|
||
if( uxMessagesWaiting > ( UBaseType_t ) 0 )
|
||
{
|
||
/* An item is not being added but overwritten, so subtract
|
||
one from the recorded number of items in the queue so when
|
||
one is added again below the number of recorded items remains
|
||
correct. */
|
||
--uxMessagesWaiting;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
|
||
pxQueue->uxMessagesWaiting = uxMessagesWaiting + 1;
|
||
|
||
return xReturn;
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer )
|
||
{
|
||
if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
|
||
{
|
||
pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
|
||
if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
|
||
{
|
||
pxQueue->u.pcReadFrom = pxQueue->pcHead;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. */
|
||
}
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
static void prvUnlockQueue( Queue_t * const pxQueue )
|
||
{
|
||
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
|
||
|
||
/* The lock counts contains the number of extra data items placed or
|
||
removed from the queue while the queue was locked. When a queue is
|
||
locked items can be added or removed, but the event lists cannot be
|
||
updated. */
|
||
taskENTER_CRITICAL();
|
||
{
|
||
int8_t cTxLock = pxQueue->cTxLock;
|
||
|
||
/* See if data was added to the queue while it was locked. */
|
||
while( cTxLock > queueLOCKED_UNMODIFIED )
|
||
{
|
||
/* Data was posted while the queue was locked. Are any tasks
|
||
blocked waiting for data to become available? */
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
{
|
||
if( pxQueue->pxQueueSetContainer != NULL )
|
||
{
|
||
if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE )
|
||
{
|
||
/* The queue is a member of a queue set, and posting to
|
||
the queue set caused a higher priority task to unblock.
|
||
A context switch is required. */
|
||
vTaskMissedYield();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Tasks that are removed from the event list will get
|
||
added to the pending ready list as the scheduler is still
|
||
suspended. */
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The task waiting has a higher priority so record that a
|
||
context switch is required. */
|
||
vTaskMissedYield();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
#else /* configUSE_QUEUE_SETS */
|
||
{
|
||
/* Tasks that are removed from the event list will get added to
|
||
the pending ready list as the scheduler is still suspended. */
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The task waiting has a higher priority so record that
|
||
a context switch is required. */
|
||
vTaskMissedYield();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
|
||
--cTxLock;
|
||
}
|
||
|
||
pxQueue->cTxLock = queueUNLOCKED;
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
|
||
/* Do the same for the Rx lock. */
|
||
taskENTER_CRITICAL();
|
||
{
|
||
int8_t cRxLock = pxQueue->cRxLock;
|
||
|
||
while( cRxLock > queueLOCKED_UNMODIFIED )
|
||
{
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
|
||
{
|
||
vTaskMissedYield();
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
|
||
--cRxLock;
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
|
||
pxQueue->cRxLock = queueUNLOCKED;
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue )
|
||
{
|
||
BaseType_t xReturn;
|
||
|
||
taskENTER_CRITICAL();
|
||
{
|
||
if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
|
||
{
|
||
xReturn = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
xReturn = pdFALSE;
|
||
}
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
|
||
return xReturn;
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
|
||
{
|
||
BaseType_t xReturn;
|
||
|
||
configASSERT( xQueue );
|
||
if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( UBaseType_t ) 0 )
|
||
{
|
||
xReturn = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
xReturn = pdFALSE;
|
||
}
|
||
|
||
return xReturn;
|
||
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
static BaseType_t prvIsQueueFull( const Queue_t *pxQueue )
|
||
{
|
||
BaseType_t xReturn;
|
||
|
||
taskENTER_CRITICAL();
|
||
{
|
||
if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
|
||
{
|
||
xReturn = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
xReturn = pdFALSE;
|
||
}
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
|
||
return xReturn;
|
||
}
|
||
/*-----------------------------------------------------------*/
|
||
|
||
BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
|
||
{
|
||
BaseType_t xReturn;
|
||
|
||
configASSERT( xQueue );
|
||
if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( ( Queue_t * ) xQueue )->uxLength )
|
||
{
|
||
xReturn = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
xReturn = pdFALSE;
|
||
}
|
||
|
||
return xReturn;
|
||
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_CO_ROUTINES == 1 )
|
||
|
||
BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait )
|
||
{
|
||
BaseType_t xReturn;
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
/* If the queue is already full we may have to block. A critical section
|
||
is required to prevent an interrupt removing something from the queue
|
||
between the check to see if the queue is full and blocking on the queue. */
|
||
portDISABLE_INTERRUPTS();
|
||
{
|
||
if( prvIsQueueFull( pxQueue ) != pdFALSE )
|
||
{
|
||
/* The queue is full - do we want to block or just leave without
|
||
posting? */
|
||
if( xTicksToWait > ( TickType_t ) 0 )
|
||
{
|
||
/* As this is called from a coroutine we cannot block directly, but
|
||
return indicating that we need to block. */
|
||
vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
|
||
portENABLE_INTERRUPTS();
|
||
return errQUEUE_BLOCKED;
|
||
}
|
||
else
|
||
{
|
||
portENABLE_INTERRUPTS();
|
||
return errQUEUE_FULL;
|
||
}
|
||
}
|
||
}
|
||
portENABLE_INTERRUPTS();
|
||
|
||
portDISABLE_INTERRUPTS();
|
||
{
|
||
if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
|
||
{
|
||
/* There is room in the queue, copy the data into the queue. */
|
||
prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
|
||
xReturn = pdPASS;
|
||
|
||
/* Were any co-routines waiting for data to become available? */
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
/* In this instance the co-routine could be placed directly
|
||
into the ready list as we are within a critical section.
|
||
Instead the same pending ready list mechanism is used as if
|
||
the event were caused from within an interrupt. */
|
||
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The co-routine waiting has a higher priority so record
|
||
that a yield might be appropriate. */
|
||
xReturn = errQUEUE_YIELD;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
xReturn = errQUEUE_FULL;
|
||
}
|
||
}
|
||
portENABLE_INTERRUPTS();
|
||
|
||
return xReturn;
|
||
}
|
||
|
||
#endif /* configUSE_CO_ROUTINES */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_CO_ROUTINES == 1 )
|
||
|
||
BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait )
|
||
{
|
||
BaseType_t xReturn;
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
/* If the queue is already empty we may have to block. A critical section
|
||
is required to prevent an interrupt adding something to the queue
|
||
between the check to see if the queue is empty and blocking on the queue. */
|
||
portDISABLE_INTERRUPTS();
|
||
{
|
||
if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
|
||
{
|
||
/* There are no messages in the queue, do we want to block or just
|
||
leave with nothing? */
|
||
if( xTicksToWait > ( TickType_t ) 0 )
|
||
{
|
||
/* As this is a co-routine we cannot block directly, but return
|
||
indicating that we need to block. */
|
||
vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
|
||
portENABLE_INTERRUPTS();
|
||
return errQUEUE_BLOCKED;
|
||
}
|
||
else
|
||
{
|
||
portENABLE_INTERRUPTS();
|
||
return errQUEUE_FULL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
portENABLE_INTERRUPTS();
|
||
|
||
portDISABLE_INTERRUPTS();
|
||
{
|
||
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
|
||
{
|
||
/* Data is available from the queue. */
|
||
pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
|
||
if( pxQueue->u.pcReadFrom >= pxQueue->pcTail )
|
||
{
|
||
pxQueue->u.pcReadFrom = pxQueue->pcHead;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
--( pxQueue->uxMessagesWaiting );
|
||
( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
|
||
|
||
xReturn = pdPASS;
|
||
|
||
/* Were any co-routines waiting for space to become available? */
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
||
{
|
||
/* In this instance the co-routine could be placed directly
|
||
into the ready list as we are within a critical section.
|
||
Instead the same pending ready list mechanism is used as if
|
||
the event were caused from within an interrupt. */
|
||
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
|
||
{
|
||
xReturn = errQUEUE_YIELD;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
xReturn = pdFAIL;
|
||
}
|
||
}
|
||
portENABLE_INTERRUPTS();
|
||
|
||
return xReturn;
|
||
}
|
||
|
||
#endif /* configUSE_CO_ROUTINES */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_CO_ROUTINES == 1 )
|
||
|
||
BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken )
|
||
{
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
/* Cannot block within an ISR so if there is no space on the queue then
|
||
exit without doing anything. */
|
||
if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
|
||
{
|
||
prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
|
||
|
||
/* We only want to wake one co-routine per ISR, so check that a
|
||
co-routine has not already been woken. */
|
||
if( xCoRoutinePreviouslyWoken == pdFALSE )
|
||
{
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
return pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
|
||
return xCoRoutinePreviouslyWoken;
|
||
}
|
||
|
||
#endif /* configUSE_CO_ROUTINES */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_CO_ROUTINES == 1 )
|
||
|
||
BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxCoRoutineWoken )
|
||
{
|
||
BaseType_t xReturn;
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
/* We cannot block from an ISR, so check there is data available. If
|
||
not then just leave without doing anything. */
|
||
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
|
||
{
|
||
/* Copy the data from the queue. */
|
||
pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
|
||
if( pxQueue->u.pcReadFrom >= pxQueue->pcTail )
|
||
{
|
||
pxQueue->u.pcReadFrom = pxQueue->pcHead;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
--( pxQueue->uxMessagesWaiting );
|
||
( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
|
||
|
||
if( ( *pxCoRoutineWoken ) == pdFALSE )
|
||
{
|
||
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
||
{
|
||
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
|
||
{
|
||
*pxCoRoutineWoken = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
|
||
xReturn = pdPASS;
|
||
}
|
||
else
|
||
{
|
||
xReturn = pdFAIL;
|
||
}
|
||
|
||
return xReturn;
|
||
}
|
||
|
||
#endif /* configUSE_CO_ROUTINES */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configQUEUE_REGISTRY_SIZE > 0 )
|
||
|
||
void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
||
{
|
||
UBaseType_t ux;
|
||
|
||
/* See if there is an empty space in the registry. A NULL name denotes
|
||
a free slot. */
|
||
for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
|
||
{
|
||
if( xQueueRegistry[ ux ].pcQueueName == NULL )
|
||
{
|
||
/* Store the information on this queue. */
|
||
xQueueRegistry[ ux ].pcQueueName = pcQueueName;
|
||
xQueueRegistry[ ux ].xHandle = xQueue;
|
||
|
||
traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
}
|
||
|
||
#endif /* configQUEUE_REGISTRY_SIZE */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configQUEUE_REGISTRY_SIZE > 0 )
|
||
|
||
const char *pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
||
{
|
||
UBaseType_t ux;
|
||
const char *pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
||
|
||
/* Note there is nothing here to protect against another task adding or
|
||
removing entries from the registry while it is being searched. */
|
||
for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
|
||
{
|
||
if( xQueueRegistry[ ux ].xHandle == xQueue )
|
||
{
|
||
pcReturn = xQueueRegistry[ ux ].pcQueueName;
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
|
||
return pcReturn;
|
||
}
|
||
|
||
#endif /* configQUEUE_REGISTRY_SIZE */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configQUEUE_REGISTRY_SIZE > 0 )
|
||
|
||
void vQueueUnregisterQueue( QueueHandle_t xQueue )
|
||
{
|
||
UBaseType_t ux;
|
||
|
||
/* See if the handle of the queue being unregistered in actually in the
|
||
registry. */
|
||
for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
|
||
{
|
||
if( xQueueRegistry[ ux ].xHandle == xQueue )
|
||
{
|
||
/* Set the name to NULL to show that this slot if free again. */
|
||
xQueueRegistry[ ux ].pcQueueName = NULL;
|
||
|
||
/* Set the handle to NULL to ensure the same queue handle cannot
|
||
appear in the registry twice if it is added, removed, then
|
||
added again. */
|
||
xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
|
||
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
|
||
|
||
#endif /* configQUEUE_REGISTRY_SIZE */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_TIMERS == 1 )
|
||
|
||
void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely )
|
||
{
|
||
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
||
|
||
/* This function should not be called by application code hence the
|
||
'Restricted' in its name. It is not part of the public API. It is
|
||
designed for use by kernel code, and has special calling requirements.
|
||
It can result in vListInsert() being called on a list that can only
|
||
possibly ever have one item in it, so the list will be fast, but even
|
||
so it should be called with the scheduler locked and not from a critical
|
||
section. */
|
||
|
||
/* Only do anything if there are no messages in the queue. This function
|
||
will not actually cause the task to block, just place it on a blocked
|
||
list. It will not block until the scheduler is unlocked - at which
|
||
time a yield will be performed. If an item is added to the queue while
|
||
the queue is locked, and the calling task blocks on the queue, then the
|
||
calling task will be immediately unblocked when the queue is unlocked. */
|
||
prvLockQueue( pxQueue );
|
||
if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
|
||
{
|
||
/* There is nothing in the queue, block for the specified period. */
|
||
vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
prvUnlockQueue( pxQueue );
|
||
}
|
||
|
||
#endif /* configUSE_TIMERS */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
||
|
||
QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
|
||
{
|
||
QueueSetHandle_t pxQueue;
|
||
|
||
pxQueue = xQueueGenericCreate( uxEventQueueLength, sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
|
||
|
||
return pxQueue;
|
||
}
|
||
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
|
||
BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet )
|
||
{
|
||
BaseType_t xReturn;
|
||
|
||
taskENTER_CRITICAL();
|
||
{
|
||
if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
|
||
{
|
||
/* Cannot add a queue/semaphore to more than one queue set. */
|
||
xReturn = pdFAIL;
|
||
}
|
||
else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
|
||
{
|
||
/* Cannot add a queue/semaphore to a queue set if there are already
|
||
items in the queue/semaphore. */
|
||
xReturn = pdFAIL;
|
||
}
|
||
else
|
||
{
|
||
( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
|
||
xReturn = pdPASS;
|
||
}
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
|
||
return xReturn;
|
||
}
|
||
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
|
||
BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet )
|
||
{
|
||
BaseType_t xReturn;
|
||
Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
|
||
|
||
if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
|
||
{
|
||
/* The queue was not a member of the set. */
|
||
xReturn = pdFAIL;
|
||
}
|
||
else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
|
||
{
|
||
/* It is dangerous to remove a queue from a set when the queue is
|
||
not empty because the queue set will still hold pending events for
|
||
the queue. */
|
||
xReturn = pdFAIL;
|
||
}
|
||
else
|
||
{
|
||
taskENTER_CRITICAL();
|
||
{
|
||
/* The queue is no longer contained in the set. */
|
||
pxQueueOrSemaphore->pxQueueSetContainer = NULL;
|
||
}
|
||
taskEXIT_CRITICAL();
|
||
xReturn = pdPASS;
|
||
}
|
||
|
||
return xReturn;
|
||
} /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
|
||
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
|
||
QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, TickType_t const xTicksToWait )
|
||
{
|
||
QueueSetMemberHandle_t xReturn = NULL;
|
||
|
||
( void ) xQueueGenericReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait, pdFALSE ); /*lint !e961 Casting from one typedef to another is not redundant. */
|
||
return xReturn;
|
||
}
|
||
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
|
||
QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
|
||
{
|
||
QueueSetMemberHandle_t xReturn = NULL;
|
||
|
||
( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
|
||
return xReturn;
|
||
}
|
||
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
/*-----------------------------------------------------------*/
|
||
|
||
#if ( configUSE_QUEUE_SETS == 1 )
|
||
|
||
static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition )
|
||
{
|
||
Queue_t *pxQueueSetContainer = pxQueue->pxQueueSetContainer;
|
||
BaseType_t xReturn = pdFALSE;
|
||
|
||
/* This function must be called form a critical section. */
|
||
|
||
configASSERT( pxQueueSetContainer );
|
||
configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
|
||
|
||
if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
|
||
{
|
||
const int8_t cTxLock = pxQueueSetContainer->cTxLock;
|
||
|
||
traceQUEUE_SEND( pxQueueSetContainer );
|
||
|
||
/* The data copied is the handle of the queue that contains data. */
|
||
xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, xCopyPosition );
|
||
|
||
if( cTxLock == queueUNLOCKED )
|
||
{
|
||
if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
|
||
{
|
||
if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
|
||
{
|
||
/* The task waiting has a higher priority. */
|
||
xReturn = pdTRUE;
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 );
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mtCOVERAGE_TEST_MARKER();
|
||
}
|
||
|
||
return xReturn;
|
||
}
|
||
|
||
#endif /* configUSE_QUEUE_SETS */
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|