fixtransforms branch: Another attempt to fix transforms on groups/ungrouped elements - mostly broken, still a work-in-progress

git-svn-id: http://svg-edit.googlecode.com/svn/branches/fixtransforms@993 eee81c28-f429-11dd-99c0-75d572ba1ddd
master
Jeff Schiller 2009-12-03 16:34:44 +00:00
parent dba61fb803
commit 464b1580bf
1 changed files with 95 additions and 180 deletions

View File

@ -11,6 +11,12 @@
/*
TODOs for TransformList:
* When ungrouping, always end up with a single [M]
* When rotating, always end up with [Rc][M]
* When scaling a group, [Rc][M]
* When scaling a shape, [Rc]
* When moving, always end up with a single [M]
* Fix Opera's centering of rotated, resized groups
* Fix resizing of rotated already-resized groups (scales incorrect with mouse)
* Ensure ungrouping works (Issue 204)
@ -1417,118 +1423,38 @@ function BatchCommand(text) {
// save the start transform value too
initial["transform"] = start_transform ? start_transform : "";
// reduce the transform list here...
// if it's a group, we have special processing to flatten transforms
if (selected.tagName == "g") {
var angle = 0;
var sx = 1, sy = 1;
var tx = 0, ty = 0;
var oldcx = 0, oldcy = 0, newcx = 0, newcy = 0;
var opType = 0;
/*
The current concatenated matrix will be of the form:
[ T ] [ R,oldc ] [ S ] [ T,s ] [ S,new ] [ - T,s ]
which can be simply represented as:
| x' | | a c e | | x |
| y' | = | b d f | * | y |
| 1 | | 0 0 1 | | 1 |
where: a = A*cos(r), c = -C*sin(r)
b = A*sin(r), d = C*cos(r)
e,f are the translation required to recenter and properly scale it.
A is the total x scale factor
C is the total y scale factor
We always want to reduce the new transformation matrix to:
[ R,newc ] [ S ]
which will be of the form:
| x' | | a c g | | x + tx |
| y' | = | b d h | * | y + ty |
| 1 | | 0 0 1 | | 1 |
where: tx,ty are appropriate translations on the children so that the effect
is identical to the original concatenated matrix above
g,h are translations to recenter the rotation.
We can get a, b, c, d, e, f from the actual tlist matrix.
We can calculate g,h from the new bounding box.
Thus, we solve for tx,ty and we get:
tx = ( (e-g)*cos(r) + (f-h)*sin(r) ) / A
ty = ( -(e-g)*sin(r) + (e-g)*cos(r) ) / C
*/
// First, we quickly extract the factors:
var N = tlist.numberOfItems;
var i = N;
while (i--) {
var xform = tlist.getItem(i);
if (xform.type == 3) {
// extract scale factors
var sobj = transformToObj(xform);
sx *= sobj.sx;
sy *= sobj.sy;
}
else if (xform.type == 4) {
var robj = transformToObj(xform);
// extract angle and old center
angle = robj.angle;
oldcx = robj.cx;
oldcy = robj.cy;
newcx = oldcx;
newcy = oldcy;
}
// if we have a translate as the first transform, let's push it down to the children
var xform = tlist.getItem(0);
if (xform.type == 2 && (tlist.numberOfItems < 3 || tlist.getItem(1).type != 3)) {
var m = xform.matrix;
tx = m.e;
ty = m.f;
tlist.removeItem(0);
}
// now find the new transformed bbox so we can determine what the
// new center of rotation should be
var origm = transformListToTransform(tlist).matrix;
if (angle != 0) {
var box = canvas.getBBox(selected);
var topleft = transformPoint(box.x,box.y,origm);
var botright = transformPoint(box.x+box.width,box.y+box.height,origm);
newcx = topleft.x + (botright.x-topleft.x)/2;
newcy = topleft.y + (botright.y-topleft.y)/2;
}
// now get e,f and calculate g,h
var e = origm.e,
f = origm.f;
var rad = angle * Math.PI / 180;
var g = newcx * (1 - Math.cos(rad)) + newcy * Math.sin(rad);
h = newcy * (1 - Math.cos(rad)) - newcx * Math.sin(rad);
// now actually calculate the new scale factors
var tx = ( (e-g)*Math.cos(rad) + (f-h)*Math.sin(rad) ) / sx,
ty = ( -(e-g)*Math.sin(rad) + (f-h)*Math.cos(rad) ) / sy;
// now we can remove all transforms from the list and create our new transforms
// if we have any other transforms, collapse them all down to a matrix
var m = transformListToTransform(tlist).matrix;
if (tlist.numberOfItems > 0) {
var newxform = svgroot.createSVGTransform();
newxform.setMatrix(m);
tlist.clear();
if (angle) {
var rot = svgroot.createSVGTransform();
rot.setRotate(angle,newcx,newcy);
tlist.appendItem(rot);
tlist.appendItem(newxform);
}
if (sx != 1 || sy != 1) {
var scale = svgroot.createSVGTransform();
scale.setScale(sx,sy);
tlist.appendItem(scale);
}
// force the accumulated translation down to the children
if (tx != 0 || ty != 0) {
var a = m.a, b = m.b, c = m.c, d = m.d;
// is it possible for (bc - ad) to equal zero?
var denom = b*c - a*d;
var ntx = (c*ty - d*tx) / denom,
nty = (b*tx - a*ty) / denom;
tx = ntx;
ty = nty;
// now push this transform down to the children
// FIXME: unfortunately recalculateDimensions depends on this global variable
var old_start_transform = start_transform;
start_transform = null;
@ -1556,28 +1482,32 @@ function BatchCommand(text) {
// This pass loop in reverse order and removes any translates or scales.
// Once we hit our first rotate(), we will only remove translates.
var bRemoveTransform = true;
n = tlist.numberOfItems;
var m = svgroot.createSVGMatrix(); // identity
while (n--) {
// once we reach an unmoveable transform, we can stop
var xform = tlist.getItem(n);
var m = xform.matrix;
// if translate...
// get the matrix of all transformations to the right of this transform
// and its inverse (B and B_inv)
var tail = transformListToTransform(tlist, n+1, tlist.numberOfItems-1).matrix,
tail_inv = tail.inverse();
// multiply (B_inv * A * B)
m = matrixMultiply(tail_inv, matrixMultiply(xform.matrix,tail));
var remap = null, scalew = null, scaleh = null;
switch (xform.type) {
case 1: // MATRIX - continue
continue;
case 2: // TRANSLATE - always remove
remap = function(x,y) { return transformPoint(x,y,m); };
scalew = function(w) { return w; }
scaleh = function(h) { return h; }
break;
case 3: // SCALE - only remove if we haven't hit a rotate
if (!bRemoveTransform) continue;
case 3: // SCALE - always remove
remap = function(x,y) { return transformPoint(x,y,m); };
scalew = function(w) { return m.a * w; }
scaleh = function(h) { return m.d * h; }
break;
case 4: // ROTATE - only re-center if we haven't previously hit a rotate
if (!bRemoveTransform) continue;
case 4: // ROTATE
// if the new center of the shape has moved, then
// re-center the rotation, and determine the movement
// offset required to keep the shape in the same place
@ -1600,8 +1530,6 @@ function BatchCommand(text) {
};
scalew = function(w) { return w; }
scaleh = function(h) { return h; }
// this latches to false once we hit our first rotate transform
bRemoveTransform = false;
var newrot = svgroot.createSVGTransform();
newrot.setRotate(xform.angle, cx, cy);
tlist.replaceItem(newrot, n);
@ -1610,6 +1538,7 @@ function BatchCommand(text) {
default:
continue;
}
if (!remap) continue;
newcenter = remap(box.x+box.width/2, box.y+box.height/2);
@ -1706,23 +1635,10 @@ function BatchCommand(text) {
break;
} // switch on element type to get initial values
// we have eliminated the transform, so remove it from the list
if (bRemoveTransform) {
// if it wasn't a rotate, we have eliminated the transform, so remove it
if (xform.type != 4) {
tlist.removeItem(n);
}
// now loop through the other transforms and adjust accordingly
for ( var j = n; j < tlist.numberOfItems; ++j) {
var changed_xform = tlist.getItem(j);
switch (changed_xform.type) {
// TODO: TRANSLATE, SCALE?
case 4: // rotate
var newrot = svgroot.createSVGTransform();
newrot.setRotate(changed_xform.angle, newcenter.x, newcenter.y);
tlist.replaceItem(newrot, j);
break;
}
}
} // looping for each transform
} // a non-group
@ -2010,13 +1926,21 @@ function BatchCommand(text) {
// This returns a single matrix Transform for a given Transform List
// (this is the equivalent of SVGTransformList.consolidate() but unlike
// that method, this one does not modify the actual SVGTransformList)
// This function is very liberal with its min,max arguments
var transformListToTransform = function(tlist, min, max) {
if (min > max) { throw "min>max"; }
var min = min || 0;
var max = max || tlist.numberOfItems;
var max = max || (tlist.numberOfItems-1);
min = parseInt(min);
max = parseInt(max);
if (min > max) { var temp = max; max = min; min = temp; }
var m = svgroot.createSVGMatrix();
for (var i = min; i < max; ++i) {
m = matrixMultiply(m, tlist.getItem(i).matrix);
for (var i = min; i <= max; ++i) {
// if our indices are out of range, just use a harmless identity matrix
var mtom = (i >= 0 && i < tlist.numberOfItems ?
tlist.getItem(i).matrix :
svgroot.createSVGMatrix());
m = matrixMultiply(m, mtom);
}
return svgroot.createSVGTransformFromMatrix(m);
};
@ -2395,6 +2319,8 @@ function BatchCommand(text) {
break;
case "rotate":
started = true;
// append a dummy transform that will be used as the rotate
tlist.appendItem(svgroot.createSVGTransform());
// we are starting an undoable change (a drag-rotation)
canvas.beginUndoableChange("transform", selectedElements);
break;
@ -5125,21 +5051,31 @@ function BatchCommand(text) {
return ret;
};
// TODO: do we need to sum up all rotation angles?
// we get the rotation angle in the tlist
this.getRotationAngle = function(elem, to_rad) {
var selected = elem || selectedElements[0];
// find the rotation transform (if any) and set it
var tlist = canvas.getTransformList(selected);
var t = tlist.numberOfItems;
var sangle = 0;
while (t--) {
var xform = tlist.getItem(t);
// rotation transform
if (xform.type == 4) {
return to_rad ? xform.angle * Math.PI / 180.0 : xform.angle;
sangle += tlist.getItem(t).angle;
}
// matrix transform
// else if (xform.type == 1) {
// var m = xform.matrix;
// sangle += Math.atan2(m.b,m.a) * 180.0 / Math.PI;
// }
}
return 0;
return to_rad ? sangle * Math.PI / 180.0 : sangle;
};
// this should:
// - remove any old rotations if present
// - prepend a new rotation at the transformed center
this.setRotationAngle = function(val,preventUndo) {
// ensure val is the proper type
val = parseFloat(val);
@ -5148,24 +5084,22 @@ function BatchCommand(text) {
var bbox = elem.getBBox();
var cx = round(bbox.x+bbox.width/2), cy = round(bbox.y+bbox.height/2);
var tlist = canvas.getTransformList(elem);
var rotIndex = 0;
// find the index of the rotation transform
// remove the rotation transform
var n = tlist.numberOfItems;
while (n--) {
var xform = tlist.getItem(n);
if (xform.type == 4) {
rotIndex = n;
// TODO: get the rotational center here?
if (tlist.getItem(n).type == 4) {
tlist.removeItem(n);
break;
}
}
// if we are not rotated yet, insert a dummy xform
var m = transformListToTransform(tlist).matrix;
var center = transformPoint(cx,cy,m);
var newrot = svgroot.createSVGTransform();
newrot.setRotate(val, center.x, center.y);
tlist.insertItemBefore(newrot, rotIndex);
// find R_nc and insert it
var center = transformPoint(cx,cy,transformListToTransform(tlist).matrix);
var R_nc = svgroot.createSVGTransform();
R_nc.setRotate(val, center.x, center.y);
tlist.insertItemBefore(R_nc,0);
if (!preventUndo) {
// we need to undo it, then redo it so it can be undo-able! :)
// TODO: figure out how to make changes to transform list undo-able cross-browser?
@ -5564,8 +5498,6 @@ function BatchCommand(text) {
canvas.addToSelection([g], true);
};
// TODO: when transferring group's rotational transform to the children, must deal
// with children who are already rotated within the group (Issue 204)
this.ungroupSelectedElement = function() {
var g = selectedElements[0];
if (g.tagName == "g") {
@ -5574,6 +5506,7 @@ function BatchCommand(text) {
var anchor = g.previousSibling;
var children = new Array(g.childNodes.length);
var xform = g.getAttribute("transform");
// get consolidated matrix
var m = transformListToTransform(canvas.getTransformList(g)).matrix;
// TODO: get all fill/stroke properties from the group that we are about to destroy
@ -5585,43 +5518,25 @@ function BatchCommand(text) {
// TODO: get the group's opacity and propagate it down to the children (multiply it
// by the child's opacity (or 1.0)
var i = 0;
var gbox = g.getBBox(),
gx = gbox.x + gbox.width/2,
gy = gbox.y + gbox.height/2;
var gangle = canvas.getRotationAngle(g, true);
while (g.firstChild) {
var elem = g.firstChild;
var oldNextSibling = elem.nextSibling;
var oldParent = elem.parentNode;
children[i++] = elem = parent.insertBefore(elem, anchor);
batchCmd.addSubCommand(new MoveElementCommand(elem, oldNextSibling, oldParent));
// transfer the group's transform down to each child and then
// call recalculateDimensions()
if (xform) {
var childBox = elem.getBBox();
var cx = childBox.x + childBox.width/2,
cy = childBox.y + childBox.height/2,
dx = cx - gx,
dy = cy - gy,
r = Math.sqrt(dx*dx + dy*dy);
var tangle = gangle + Math.atan2(dy,dx);
var newcx = r * Math.cos(tangle) + gx,
newcy = r * Math.sin(tangle) + gy;
childBox.x += (newcx - cx);
childBox.y += (newcy - cy);
// now we add the angle that the element was rotated by
// if it's non-zero, we need to set the new transform
// otherwise, we clear it
var angle = gangle + canvas.getRotationAngle(elem, true);
var oldxform = elem.getAttribute("transform");
var changes = {};
changes["transform"] = elem.getAttribute("transform");
if (angle != 0) {
elem.setAttribute("transform", "rotate(" + (angle*180.0)/Math.PI + " " + cx + "," + cy + ")");
}
else {
elem.setAttribute("transform", "");
}
batchCmd.addSubCommand(new ChangeElementCommand(elem, changes));
changes["transform"] = oldxform ? oldxform : "";
var newxform = svgroot.createSVGTransform();
var chtlist = canvas.getTransformList(elem);
newxform.setMatrix(matrixMultiply(m,transformListToTransform(chtlist).matrix.inverse()));
chtlist.insertItemBefore(newxform,0);
batchCmd.addSubCommand(recalculateDimensions(elem));
}
}