Changed other files back to mathandys master release.
parent
fd3c0091b8
commit
a4b0c7e229
|
@ -5,21 +5,23 @@ The main tool being the svg2paths() function."""
|
|||
from __future__ import division, absolute_import, print_function
|
||||
from xml.dom.minidom import parse
|
||||
from os import path as os_path, getcwd
|
||||
import numpy as np
|
||||
from shutil import copyfile
|
||||
|
||||
# Internal dependencies
|
||||
from .parser import parse_path
|
||||
from .path import Path, bpoints2bezier
|
||||
|
||||
|
||||
def polyline2pathd(polyline_d):
|
||||
"""converts the string from a polyline points-attribute to a string for a
|
||||
Path object d-attribute"""
|
||||
"""converts the string from a polyline d-attribute to a string for a Path
|
||||
object d-attribute"""
|
||||
points = polyline_d.replace(', ', ',')
|
||||
points = points.replace(' ,', ',')
|
||||
points = points.split()
|
||||
|
||||
closed = points[0] == points[-1]
|
||||
if points[0] == points[-1]:
|
||||
closed = True
|
||||
else:
|
||||
closed = False
|
||||
|
||||
d = 'M' + points.pop(0).replace(',', ' ')
|
||||
for p in points:
|
||||
|
@ -29,30 +31,6 @@ def polyline2pathd(polyline_d):
|
|||
return d
|
||||
|
||||
|
||||
def polygon2pathd(polyline_d):
|
||||
"""converts the string from a polygon points-attribute to a string for a
|
||||
Path object d-attribute.
|
||||
Note: For a polygon made from n points, the resulting path will be
|
||||
composed of n lines (even if some of these lines have length zero)."""
|
||||
points = polyline_d.replace(', ', ',')
|
||||
points = points.replace(' ,', ',')
|
||||
points = points.split()
|
||||
|
||||
reduntantly_closed = points[0] == points[-1]
|
||||
|
||||
d = 'M' + points[0].replace(',', ' ')
|
||||
for p in points[1:]:
|
||||
d += 'L' + p.replace(',', ' ')
|
||||
|
||||
# The `parse_path` call ignores redundant 'z' (closure) commands
|
||||
# e.g. `parse_path('M0 0L100 100Z') == parse_path('M0 0L100 100L0 0Z')`
|
||||
# This check ensures that an n-point polygon is converted to an n-Line path.
|
||||
if reduntantly_closed:
|
||||
d += 'L' + points[0].replace(',', ' ')
|
||||
|
||||
return d + 'z'
|
||||
|
||||
|
||||
def svg2paths(svg_file_location,
|
||||
convert_lines_to_paths=True,
|
||||
convert_polylines_to_paths=True,
|
||||
|
@ -84,126 +62,52 @@ def svg2paths(svg_file_location,
|
|||
# else:
|
||||
doc = parse(svg_file_location)
|
||||
|
||||
# Parse a list of paths
|
||||
def dom2dict(element):
|
||||
"""Converts DOM elements to dictionaries of attributes."""
|
||||
keys = list(element.attributes.keys())
|
||||
values = [val.value for val in list(element.attributes.values())]
|
||||
return dict(list(zip(keys, values)))
|
||||
|
||||
def parse_trafo(trafo_str):
|
||||
"""Returns six matrix elements for a matrix transformation for any valid SVG transformation string."""
|
||||
trafos = trafo_str.split(')')[:-1]
|
||||
trafo_matrix = np.array([1., 0., 0., 0., 1., 0., 0., 0., 1.]).reshape((3, 3)) # Start with neutral matrix
|
||||
# Use minidom to extract path strings from input SVG
|
||||
paths = [dom2dict(el) for el in doc.getElementsByTagName('path')]
|
||||
d_strings = [el['d'] for el in paths]
|
||||
attribute_dictionary_list = paths
|
||||
# if pathless_svg:
|
||||
# for el in doc.getElementsByTagName('path'):
|
||||
# el.parentNode.removeChild(el)
|
||||
|
||||
for trafo_sub_str in trafos:
|
||||
trafo_sub_str = trafo_sub_str.lstrip(', ')
|
||||
value_str = trafo_sub_str.split('(')[1]
|
||||
values = list(map(float, value_str.split(',')))
|
||||
if 'translate' in trafo_sub_str:
|
||||
x = values[0]
|
||||
y = values[1] if (len(values) > 1) else 0.
|
||||
trafo_matrix = np.dot(trafo_matrix,
|
||||
np.array([1., 0., x, 0., 1., y, 0., 0., 1.]).reshape((3, 3)))
|
||||
elif 'scale' in trafo_sub_str:
|
||||
x = values[0]
|
||||
y = values[1] if (len(values) > 1) else 0.
|
||||
trafo_matrix = np.dot(trafo_matrix,
|
||||
np.array([x, 0., 0., 0., y, 0., 0., 0., 1.]).reshape((3, 3)))
|
||||
elif 'rotate' in trafo_sub_str:
|
||||
a = values[0]*np.pi/180.
|
||||
x = values[1] if (len(values) > 1) else 0.
|
||||
y = values[2] if (len(values) > 2) else 0.
|
||||
am = np.dot(np.array([np.cos(a), -np.sin(a), 0., np.sin(a), np.cos(a), 0., 0., 0., 1.]).reshape((3, 3)),
|
||||
np.array([1., 0., -x, 0., 1., -y, 0., 0., 1.]).reshape((3, 3)))
|
||||
am = np.dot(np.array([1., 0., x, 0., 1., y, 0., 0., 1.]).reshape((3, 3)), am)
|
||||
trafo_matrix = np.dot(trafo_matrix, am)
|
||||
elif 'skewX' in trafo_sub_str:
|
||||
a = values[0]*np.pi/180.
|
||||
trafo_matrix = np.dot(trafo_matrix,
|
||||
np.array([1., np.tan(a), 0., 0., 1., 0., 0., 0., 1.]).reshape((3, 3)))
|
||||
elif 'skewY' in trafo_sub_str:
|
||||
a = values[0]*np.pi/180.
|
||||
trafo_matrix = np.dot(trafo_matrix,
|
||||
np.array([1., 0., 0., np.tan(a), 1., 0., 0., 0., 1.]).reshape((3, 3)))
|
||||
else: # Assume matrix transformation
|
||||
while len(values) < 6:
|
||||
values += [0.]
|
||||
trafo_matrix = np.dot(trafo_matrix,
|
||||
np.array([values[::2], values[1::2], [0., 0., 1.]]))
|
||||
# Use minidom to extract polyline strings from input SVG, convert to
|
||||
# path strings, add to list
|
||||
if convert_polylines_to_paths:
|
||||
plins = [dom2dict(el) for el in doc.getElementsByTagName('polyline')]
|
||||
d_strings += [polyline2pathd(pl['points']) for pl in plins]
|
||||
attribute_dictionary_list += plins
|
||||
|
||||
trafo_list = list(trafo_matrix.reshape((9,))[:6])
|
||||
return trafo_list[::3]+trafo_list[1::3]+trafo_list[2::3]
|
||||
# Use minidom to extract polygon strings from input SVG, convert to
|
||||
# path strings, add to list
|
||||
if convert_polygons_to_paths:
|
||||
pgons = [dom2dict(el) for el in doc.getElementsByTagName('polygon')]
|
||||
d_strings += [polyline2pathd(pg['points']) + 'z' for pg in pgons]
|
||||
attribute_dictionary_list += pgons
|
||||
|
||||
def parse_node(node):
|
||||
"""Recursively iterate over nodes. Parse the groups individually to apply group transformations."""
|
||||
# Get everything in this tag
|
||||
data = [parse_node(child) for child in node.childNodes]
|
||||
if len(data) == 0:
|
||||
ret_list = []
|
||||
attribute_dictionary_list_int = []
|
||||
else:
|
||||
# Flatten the lists
|
||||
ret_list = []
|
||||
attribute_dictionary_list_int = []
|
||||
for item in data:
|
||||
if type(item) == tuple:
|
||||
if len(item[0]) > 0:
|
||||
ret_list += item[0]
|
||||
attribute_dictionary_list_int += item[1]
|
||||
if convert_lines_to_paths:
|
||||
lines = [dom2dict(el) for el in doc.getElementsByTagName('line')]
|
||||
d_strings += [('M' + l['x1'] + ' ' + l['y1'] +
|
||||
'L' + l['x2'] + ' ' + l['y2']) for l in lines]
|
||||
attribute_dictionary_list += lines
|
||||
|
||||
if node.nodeName == 'g':
|
||||
# Group found
|
||||
# Analyse group properties
|
||||
group = dom2dict(node)
|
||||
if 'transform' in group.keys():
|
||||
trafo = group['transform']
|
||||
# if pathless_svg:
|
||||
# with open(pathless_svg, "wb") as f:
|
||||
# doc.writexml(f)
|
||||
|
||||
# Convert all transformations into a matrix operation
|
||||
am = parse_trafo(trafo)
|
||||
am = np.array([am[::2], am[1::2], [0., 0., 1.]])
|
||||
|
||||
# Apply transformation to all elements of the paths
|
||||
def xy(p):
|
||||
return np.array([p.real, p.imag, 1.])
|
||||
|
||||
def z(coords):
|
||||
return coords[0] + 1j*coords[1]
|
||||
|
||||
ret_list = [Path(*[bpoints2bezier([z(np.dot(am, xy(pt)))
|
||||
for pt in seg.bpoints()])
|
||||
for seg in path])
|
||||
for path in ret_list]
|
||||
return ret_list, attribute_dictionary_list_int
|
||||
elif node.nodeName == 'path':
|
||||
# Path found; parsing it
|
||||
path = dom2dict(node)
|
||||
d_string = path['d']
|
||||
return [parse_path(d_string)]+ret_list, [path]+attribute_dictionary_list_int
|
||||
elif convert_polylines_to_paths and node.nodeName == 'polyline':
|
||||
attrs = dom2dict(node)
|
||||
path = parse_path(polyline2pathd(node['points']))
|
||||
return [path]+ret_list, [attrs]+attribute_dictionary_list_int
|
||||
elif convert_polygons_to_paths and node.nodeName == 'polygon':
|
||||
attrs = dom2dict(node)
|
||||
path = parse_path(polygon2pathd(attrs['points']))
|
||||
return [path]+ret_list, [attrs]+attribute_dictionary_list_int
|
||||
elif convert_lines_to_paths and node.nodeName == 'line':
|
||||
line = dom2dict(node)
|
||||
d_string = ('M' + line['x1'] + ' ' + line['y1'] +
|
||||
'L' + line['x2'] + ' ' + line['y2'])
|
||||
path = parse_path(d_string)
|
||||
return [path]+ret_list, [line]+attribute_dictionary_list_int
|
||||
else:
|
||||
return ret_list, attribute_dictionary_list_int
|
||||
|
||||
path_list, attribute_dictionary_list = parse_node(doc)
|
||||
if return_svg_attributes:
|
||||
svg_attributes = dom2dict(doc.getElementsByTagName('svg')[0])
|
||||
doc.unlink()
|
||||
path_list = [parse_path(d) for d in d_strings]
|
||||
return path_list, attribute_dictionary_list, svg_attributes
|
||||
else:
|
||||
doc.unlink()
|
||||
path_list = [parse_path(d) for d in d_strings]
|
||||
return path_list, attribute_dictionary_list
|
||||
|
||||
|
||||
|
|
|
@ -1,14 +1,13 @@
|
|||
Metadata-Version: 1.1
|
||||
Name: svgpathtools
|
||||
Version: 1.3.2b0
|
||||
Version: 1.3.1
|
||||
Summary: A collection of tools for manipulating and analyzing SVG Path objects and Bezier curves.
|
||||
Home-page: https://github.com/mathandy/svgpathtools
|
||||
Author: Andy Port
|
||||
Author-email: AndyAPort@gmail.com
|
||||
License: MIT
|
||||
Download-URL: http://github.com/mathandy/svgpathtools/tarball/1.3.2beta
|
||||
Description:
|
||||
svgpathtools
|
||||
Download-URL: http://github.com/mathandy/svgpathtools/tarball/1.3.1
|
||||
Description: svgpathtools
|
||||
============
|
||||
|
||||
svgpathtools is a collection of tools for manipulating and analyzing SVG
|
||||
|
@ -47,6 +46,11 @@ Description:
|
|||
- compute **inverse arc length**
|
||||
- convert RGB color tuples to hexadecimal color strings and back
|
||||
|
||||
Note on Python 3
|
||||
----------------
|
||||
While I am hopeful that this package entirely works with Python 3, it was born from a larger project coded in Python 2 and has not been thoroughly tested in
|
||||
Python 3. Please let me know if you find any incompatibilities.
|
||||
|
||||
Prerequisites
|
||||
-------------
|
||||
|
||||
|
@ -90,6 +94,8 @@ Description:
|
|||
module <https://github.com/regebro/svg.path>`__. Interested svg.path
|
||||
users should see the compatibility notes at bottom of this readme.
|
||||
|
||||
Also, a big thanks to the author(s) of `A Primer on Bézier Curves <http://pomax.github.io/bezierinfo/>`_, an outstanding resource for learning about Bézier curves and Bézier curve-related algorithms.
|
||||
|
||||
Basic Usage
|
||||
-----------
|
||||
|
||||
|
@ -120,11 +126,11 @@ Description:
|
|||
on discontinuous Path objects. A simple workaround is provided, however,
|
||||
by the ``Path.continuous_subpaths()`` method. `↩ <#a1>`__
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
from __future__ import division, print_function
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
# Coordinates are given as points in the complex plane
|
||||
from svgpathtools import Path, Line, QuadraticBezier, CubicBezier, Arc
|
||||
|
@ -161,7 +167,7 @@ Description:
|
|||
list. So segments can **append**\ ed, **insert**\ ed, set by index,
|
||||
**del**\ eted, **enumerate**\ d, **slice**\ d out, etc.
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
# Let's append another to the end of it
|
||||
path.append(CubicBezier(250+350j, 275+350j, 250+225j, 200+100j))
|
||||
|
@ -228,7 +234,7 @@ Description:
|
|||
| Note: Line, Polyline, Polygon, and Path SVG elements can all be
|
||||
converted to Path objects using this function.
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
# Read SVG into a list of path objects and list of dictionaries of attributes
|
||||
from svgpathtools import svg2paths, wsvg
|
||||
|
@ -265,7 +271,7 @@ Description:
|
|||
automatically attempt to open the created svg file in your default SVG
|
||||
viewer.
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
# Let's make a new SVG that's identical to the first
|
||||
wsvg(paths, attributes=attributes, svg_attributes=svg_attributes, filename='output1.svg')
|
||||
|
@ -297,7 +303,7 @@ Description:
|
|||
that ``path.point(T)=path[k].point(t)``.
|
||||
| There is also a ``Path.t2T()`` method to solve the inverse problem.
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
# Example:
|
||||
|
||||
|
@ -327,11 +333,11 @@ Description:
|
|||
True
|
||||
|
||||
|
||||
Bezier curves as NumPy polynomial objects
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Tangent vectors and Bezier curves as numpy polynomial objects
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
| Another great way to work with the parameterizations for ``Line``,
|
||||
``QuadraticBezier``, and ``CubicBezier`` objects is to convert them to
|
||||
| Another great way to work with the parameterizations for Line,
|
||||
QuadraticBezier, and CubicBezier objects is to convert them to
|
||||
``numpy.poly1d`` objects. This is done easily using the
|
||||
``Line.poly()``, ``QuadraticBezier.poly()`` and ``CubicBezier.poly()``
|
||||
methods.
|
||||
|
@ -363,10 +369,9 @@ Description:
|
|||
\end{bmatrix}
|
||||
\begin{bmatrix}P_0\\P_1\\P_2\\P_3\end{bmatrix}
|
||||
|
||||
``QuadraticBezier.poly()`` and ``Line.poly()`` are `defined
|
||||
similarly <https://en.wikipedia.org/wiki/B%C3%A9zier_curve#General_definition>`__.
|
||||
QuadraticBezier.poly() and Line.poly() are defined similarly.
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
# Example:
|
||||
b = CubicBezier(300+100j, 100+100j, 200+200j, 200+300j)
|
||||
|
@ -396,25 +401,15 @@ Description:
|
|||
(-400 + -100j) t + (900 + 300j) t - 600 t + (300 + 100j)
|
||||
|
||||
|
||||
The ability to convert between Bezier objects to NumPy polynomial
|
||||
objects is very useful. For starters, we can take turn a list of Bézier
|
||||
segments into a NumPy array
|
||||
To illustrate the awesomeness of being able to convert our Bezier curve
|
||||
objects to numpy.poly1d objects and back, lets compute the unit tangent
|
||||
vector of the above CubicBezier object, b, at t=0.5 in four different
|
||||
ways.
|
||||
|
||||
Numpy Array operations on Bézier path segments
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Tangent vectors (and more on polynomials)
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
`Example available
|
||||
here <https://github.com/mathandy/svgpathtools/blob/master/examples/compute-many-points-quickly-using-numpy-arrays.py>`__
|
||||
|
||||
To further illustrate the power of being able to convert our Bezier
|
||||
curve objects to numpy.poly1d objects and back, lets compute the unit
|
||||
tangent vector of the above CubicBezier object, b, at t=0.5 in four
|
||||
different ways.
|
||||
|
||||
Tangent vectors (and more on NumPy polynomials)
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
t = 0.5
|
||||
### Method 1: the easy way
|
||||
|
@ -456,7 +451,7 @@ Description:
|
|||
Translations (shifts), reversing orientation, and normal vectors
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
# Speaking of tangents, let's add a normal vector to the picture
|
||||
n = b.normal(t)
|
||||
|
@ -486,7 +481,7 @@ Description:
|
|||
Rotations and Translations
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
# Let's take a Line and an Arc and make some pictures
|
||||
top_half = Arc(start=-1, radius=1+2j, rotation=0, large_arc=1, sweep=1, end=1)
|
||||
|
@ -519,7 +514,7 @@ Description:
|
|||
``CubicBezier.length()``, and ``Arc.length()`` methods, as well as the
|
||||
related inverse arc length methods ``.ilength()`` function to do this.
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
# First we'll load the path data from the file test.svg
|
||||
paths, attributes = svg2paths('test.svg')
|
||||
|
@ -561,7 +556,7 @@ Description:
|
|||
Intersections between Bezier curves
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
# Let's find all intersections between redpath and the other
|
||||
redpath = paths[0]
|
||||
|
@ -585,7 +580,7 @@ Description:
|
|||
Here we'll find the `offset
|
||||
curve <https://en.wikipedia.org/wiki/Parallel_curve>`__ for a few paths.
|
||||
|
||||
.. code:: ipython2
|
||||
.. code:: python
|
||||
|
||||
from svgpathtools import parse_path, Line, Path, wsvg
|
||||
def offset_curve(path, offset_distance, steps=1000):
|
||||
|
@ -643,7 +638,6 @@ Description:
|
|||
|
||||
This module is under a MIT License.
|
||||
|
||||
|
||||
Keywords: svg,svg path,svg.path,bezier,parse svg path,display svg
|
||||
Platform: OS Independent
|
||||
Classifier: Development Status :: 4 - Beta
|
||||
|
|
|
@ -15,10 +15,12 @@ test.svg
|
|||
vectorframes.svg
|
||||
svgpathtools/__init__.py
|
||||
svgpathtools/bezier.py
|
||||
svgpathtools/directional_field.py
|
||||
svgpathtools/misctools.py
|
||||
svgpathtools/parser.py
|
||||
svgpathtools/path.py
|
||||
svgpathtools/paths2svg.py
|
||||
svgpathtools/pathtools.py
|
||||
svgpathtools/polytools.py
|
||||
svgpathtools/smoothing.py
|
||||
svgpathtools/svg2paths.py
|
||||
|
@ -26,13 +28,10 @@ svgpathtools.egg-info/PKG-INFO
|
|||
svgpathtools.egg-info/SOURCES.txt
|
||||
svgpathtools.egg-info/dependency_links.txt
|
||||
svgpathtools.egg-info/top_level.txt
|
||||
test/groups.svg
|
||||
test/polygons.svg
|
||||
test/test.svg
|
||||
test/test_bezier.py
|
||||
test/test_generation.py
|
||||
test/test_parsing.py
|
||||
test/test_path.py
|
||||
test/test_pathtools.py
|
||||
test/test_polytools.py
|
||||
test/test_svg2paths.py
|
||||
test/test_svg2paths_groups.py
|
|
@ -97,6 +97,21 @@ def bbox2path(xmin, xmax, ymin, ymax):
|
|||
return Path(b, r, t.reversed(), l.reversed())
|
||||
|
||||
|
||||
def polyline(*points):
|
||||
"""Converts a list of points to a Path composed of lines connecting those
|
||||
points (i.e. a linear spline or polyline). See also `polygon()`."""
|
||||
return Path(*[Line(points[i], points[i+1])
|
||||
for i in range(len(points) - 1)])
|
||||
|
||||
|
||||
def polygon(*points):
|
||||
"""Converts a list of points to a Path composed of lines connecting those
|
||||
points, then closes the path by connecting the last point to the first.
|
||||
See also `polyline()`."""
|
||||
return Path(*[Line(points[i], points[(i + 1) % len(points)])
|
||||
for i in range(len(points))])
|
||||
|
||||
|
||||
# Conversion###################################################################
|
||||
|
||||
def bpoints2bezier(bpoints):
|
||||
|
|
Loading…
Reference in New Issue