svgpathtools/test/test_path.py

2132 lines
98 KiB
Python

# External dependencies
from __future__ import division, absolute_import, print_function
import os
import time
from sys import version_info
import unittest
from math import sqrt, pi
from operator import itemgetter
import numpy as np
import random
import warnings
# Internal dependencies
from svgpathtools import (
Line, QuadraticBezier, CubicBezier, Arc, Path, poly2bez, path_encloses_pt,
bpoints2bezier, closest_point_in_path, farthest_point_in_path,
is_bezier_segment, is_bezier_path, parse_path
)
from svgpathtools.path import bezier_radialrange
# An important note for those doing any debugging:
# ------------------------------------------------
# Most of these test points are not calculated separately, as that would
# take too long and be too error prone. Instead the curves have been verified
# to be correct visually with the disvg() function.
RUN_SLOW_TESTS = False
TOL = 1e-4 # default for tests that don't specify a `delta` or `places`
def random_line():
x = (random.random() - 0.5) * 2000
y = (random.random() - 0.5) * 2000
start = complex(x, y)
x = (random.random() - 0.5) * 2000
y = (random.random() - 0.5) * 2000
end = complex(x, y)
return Line(start, end)
def random_arc():
x = (random.random() - 0.5) * 2000
y = (random.random() - 0.5) * 2000
start = complex(x, y)
x = (random.random() - 0.5) * 2000
y = (random.random() - 0.5) * 2000
end = complex(x, y)
x = (random.random() - 0.5) * 2000
y = (random.random() - 0.5) * 2000
radius = complex(x, y)
large_arc = random.choice([True, False])
sweep = random.choice([True, False])
return Arc(start=start, radius=radius, rotation=0.0, large_arc=large_arc, sweep=sweep, end=end)
def assert_intersections(test_case, a_seg, b_seg, intersections, count, msg=None, tol=1e-4):
if count is not None:
test_case.assertTrue(len(intersections) == count, msg=msg)
for i in intersections:
test_case.assertTrue(i[0] >= 0.0, msg=msg)
test_case.assertTrue(i[0] <= 1.0, msg=msg)
test_case.assertTrue(i[1] >= 0.0, msg=msg)
test_case.assertTrue(i[1] <= 1.0, msg=msg)
test_case.assertAlmostEqual(a_seg.point(i[0]), b_seg.point(i[1]), msg=msg, delta=tol)
class LineTest(unittest.TestCase):
def test_lines(self):
# These points are calculated, and not just regression tests.
line1 = Line(0j, 400 + 0j)
self.assertAlmostEqual(line1.point(0), 0j, delta=TOL)
self.assertAlmostEqual(line1.point(0.3), (120 + 0j), delta=TOL)
self.assertAlmostEqual(line1.point(0.5), (200 + 0j), delta=TOL)
self.assertAlmostEqual(line1.point(0.9), (360 + 0j), delta=TOL)
self.assertAlmostEqual(line1.point(1), (400 + 0j), delta=TOL)
self.assertAlmostEqual(line1.length(), 400, delta=TOL)
line2 = Line(400 + 0j, 400 + 300j)
self.assertAlmostEqual(line2.point(0), (400 + 0j), delta=TOL)
self.assertAlmostEqual(line2.point(0.3), (400 + 90j), delta=TOL)
self.assertAlmostEqual(line2.point(0.5), (400 + 150j), delta=TOL)
self.assertAlmostEqual(line2.point(0.9), (400 + 270j), delta=TOL)
self.assertAlmostEqual(line2.point(1), (400 + 300j), delta=TOL)
self.assertAlmostEqual(line2.length(), 300, delta=TOL)
line3 = Line(400 + 300j, 0j)
self.assertAlmostEqual(line3.point(0), (400 + 300j), delta=TOL)
self.assertAlmostEqual(line3.point(0.3), (280 + 210j), delta=TOL)
self.assertAlmostEqual(line3.point(0.5), (200 + 150j), delta=TOL)
self.assertAlmostEqual(line3.point(0.9), (40 + 30j), delta=TOL)
self.assertAlmostEqual(line3.point(1), 0j, delta=TOL)
self.assertAlmostEqual(line3.length(), 500, delta=TOL)
def test_equality(self):
# This is to test the __eq__ and __ne__ methods, so we can't use
# assertEqual and assertNotEqual
line = Line(0j, 400 + 0j)
cubic = CubicBezier(600 + 500j, 600 + 350j, 900 + 650j, 900 + 500j)
self.assertTrue(line == Line(0, 400))
self.assertTrue(line != Line(100, 400))
self.assertFalse(line == str(line))
self.assertTrue(line != str(line))
self.assertFalse(cubic == line)
def test_point_to_t(self):
l = Line(start=(0+0j), end=(0+10j))
self.assertEqual(l.point_to_t(0+0j), 0.0)
self.assertAlmostEqual(l.point_to_t(0+5j), 0.5, delta=TOL)
self.assertEqual(l.point_to_t(0+10j), 1.0)
self.assertIsNone(l.point_to_t(1+0j))
self.assertIsNone(l.point_to_t(0-1j))
self.assertIsNone(l.point_to_t(0+11j))
l = Line(start=(0+0j), end=(10+10j))
self.assertEqual(l.point_to_t(0+0j), 0.0)
self.assertAlmostEqual(l.point_to_t(5+5j), 0.5, delta=TOL)
self.assertEqual(l.point_to_t(10+10j), 1.0)
self.assertIsNone(l.point_to_t(1+0j))
self.assertIsNone(l.point_to_t(0-1j))
self.assertIsNone(l.point_to_t(0+11j))
self.assertIsNone(l.point_to_t(10.001+10.001j))
self.assertIsNone(l.point_to_t(-0.001-0.001j))
l = Line(start=(0+0j), end=(10+0j))
self.assertEqual(l.point_to_t(0+0j), 0.0)
self.assertAlmostEqual(l.point_to_t(5+0j), 0.5, delta=TOL)
self.assertEqual(l.point_to_t(10+0j), 1.0)
self.assertIsNone(l.point_to_t(0+1j))
self.assertIsNone(l.point_to_t(0-1j))
self.assertIsNone(l.point_to_t(0+11j))
self.assertIsNone(l.point_to_t(10.001+0j))
self.assertIsNone(l.point_to_t(-0.001-0j))
l = Line(start=(-2-1j), end=(11-20j))
self.assertEqual(l.point_to_t(-2-1j), 0.0)
self.assertAlmostEqual(l.point_to_t(4.5-10.5j), 0.5, delta=TOL)
self.assertEqual(l.point_to_t(11-20j), 1.0)
self.assertIsNone(l.point_to_t(0+1j))
self.assertIsNone(l.point_to_t(0-1j))
self.assertIsNone(l.point_to_t(0+11j))
self.assertIsNone(l.point_to_t(10.001+0j))
self.assertIsNone(l.point_to_t(-0.001-0j))
l = Line(start=(40.234-32.613j), end=(12.7-32.613j))
self.assertEqual(l.point_to_t(40.234-32.613j), 0.0)
self.assertAlmostEqual(l.point_to_t(33.3505-32.613j), 0.25, delta=TOL)
self.assertAlmostEqual(l.point_to_t(26.467-32.613j), 0.50, delta=TOL)
self.assertAlmostEqual(l.point_to_t(19.5835-32.613j), 0.75, delta=TOL)
self.assertEqual(l.point_to_t(12.7-32.613j), 1.0)
self.assertIsNone(l.point_to_t(40.25-32.613j))
self.assertIsNone(l.point_to_t(12.65-32.613j))
self.assertIsNone(l.point_to_t(11-20j))
self.assertIsNone(l.point_to_t(0+1j))
self.assertIsNone(l.point_to_t(0-1j))
self.assertIsNone(l.point_to_t(0+11j))
self.assertIsNone(l.point_to_t(10.001+0j))
self.assertIsNone(l.point_to_t(-0.001-0j))
random.seed()
for line_index in range(100):
l = random_line()
for t_index in range(100):
orig_t = random.random()
p = l.point(orig_t)
computed_t = l.point_to_t(p)
self.assertAlmostEqual(orig_t, computed_t, delta=TOL)
def test_radialrange(self):
def crand():
return 100*(np.random.rand() + np.random.rand()*1j)
for _ in range(100):
z = crand()
l = Line(crand(), crand())
(min_da, min_ta), (max_da, max_ta) = l.radialrange(z)
(min_db, min_tb), (max_db, max_tb) = bezier_radialrange(l, z)
self.assertAlmostEqual(min_da, min_db, delta=TOL)
self.assertAlmostEqual(min_ta, min_tb, delta=TOL)
self.assertAlmostEqual(max_da, max_db, delta=TOL)
self.assertAlmostEqual(max_ta, max_tb, delta=TOL)
class CubicBezierTest(unittest.TestCase):
def test_approx_circle(self):
"""This is a approximate circle drawn in Inkscape"""
cub1 = CubicBezier(
complex(0, 0),
complex(0, 109.66797),
complex(-88.90345, 198.57142),
complex(-198.57142, 198.57142)
)
cub1_tests = [
(0, 0j),
(0.1, (-2.59896457 + 32.20931647j)),
(0.2, (-10.12330256 + 62.76392816j)),
(0.3, (-22.16418039 + 91.25500149j)),
(0.4, (-38.31276448 + 117.27370288j)),
(0.5, (-58.16022125 + 140.41119875j)),
(0.6, (-81.29771712 + 160.25865552j)),
(0.7, (-107.31641851 + 176.40723961j)),
(0.8, (-135.80749184 + 188.44811744j)),
(0.9, (-166.36210353 + 195.97245543j)),
(1, (-198.57142 + 198.57142j)),
]
cub2 = CubicBezier(
complex(-198.57142, 198.57142),
complex(-109.66797 - 198.57142, 0 + 198.57142),
complex(-198.57143 - 198.57142, -88.90345 + 198.57142),
complex(-198.57143 - 198.57142, 0),
)
cub2_tests = [
(0, (-198.57142 + 198.57142j)),
(0.1, (-230.78073675 + 195.97245543j)),
(0.2, (-261.3353492 + 188.44811744j)),
(0.3, (-289.82642365 + 176.40723961j)),
(0.4, (-315.8451264 + 160.25865552j)),
(0.5, (-338.98262375 + 140.41119875j)),
(0.6, (-358.830082 + 117.27370288j)),
(0.7, (-374.97866745 + 91.25500149j)),
(0.8, (-387.0195464 + 62.76392816j)),
(0.9, (-394.54388515 + 32.20931647j)),
(1, (-397.14285 + 0j)),
]
cub3 = CubicBezier(
complex(-198.57143 - 198.57142, 0),
complex(0 - 198.57143 - 198.57142, -109.66797),
complex(88.90346 - 198.57143 - 198.57142, -198.57143),
complex(-198.57142, -198.57143)
)
cub3_tests = [
(0, (-397.14285 + 0j)),
(0.1, (-394.54388515 - 32.20931675j)),
(0.2, (-387.0195464 - 62.7639292j)),
(0.3, (-374.97866745 - 91.25500365j)),
(0.4, (-358.830082 - 117.2737064j)),
(0.5, (-338.98262375 - 140.41120375j)),
(0.6, (-315.8451264 - 160.258662j)),
(0.7, (-289.82642365 - 176.40724745j)),
(0.8, (-261.3353492 - 188.4481264j)),
(0.9, (-230.78073675 - 195.97246515j)),
(1, (-198.57142 - 198.57143j)),
]
cub4 = CubicBezier(
complex(-198.57142, -198.57143),
complex(109.66797 - 198.57142, 0 - 198.57143),
complex(0, 88.90346 - 198.57143),
complex(0, 0),
)
cub4_tests = [
(0, (-198.57142 - 198.57143j)),
(0.1, (-166.36210353 - 195.97246515j)),
(0.2, (-135.80749184 - 188.4481264j)),
(0.3, (-107.31641851 - 176.40724745j)),
(0.4, (-81.29771712 - 160.258662j)),
(0.5, (-58.16022125 - 140.41120375j)),
(0.6, (-38.31276448 - 117.2737064j)),
(0.7, (-22.16418039 - 91.25500365j)),
(0.8, (-10.12330256 - 62.7639292j)),
(0.9, (-2.59896457 - 32.20931675j)),
(1, 0j),
]
test_sets = [
('cub1', cub1, cub1_tests),
('cub2', cub2, cub2_tests),
('cub3', cub3, cub3_tests),
('cub4', cub4, cub4_tests),
]
tol = 1e-4
for set_name, path_segment, test_set in test_sets:
for t, expected_result in test_set:
result = path_segment.point(t)
msg = '{}.point({}) = {} | expected_result = {}' \
''.format(set_name, t, result, expected_result)
self.assertAlmostEqual(result, expected_result, msg=msg, delta=tol)
def test_svg_examples(self):
# M100,200 C100,100 250,100 250,200
path1 = CubicBezier(100 + 200j, 100 + 100j, 250 + 100j, 250 + 200j)
self.assertAlmostEqual(path1.point(0), (100 + 200j), delta=TOL)
self.assertAlmostEqual(path1.point(0.3), (132.4 + 137j), delta=TOL)
self.assertAlmostEqual(path1.point(0.5), (175 + 125j), delta=TOL)
self.assertAlmostEqual(path1.point(0.9), (245.8 + 173j), delta=TOL)
self.assertAlmostEqual(path1.point(1), (250 + 200j), delta=TOL)
# S400,300 400,200
path2 = CubicBezier(250 + 200j, 250 + 300j, 400 + 300j, 400 + 200j)
self.assertAlmostEqual(path2.point(0), (250 + 200j), delta=TOL)
self.assertAlmostEqual(path2.point(0.3), (282.4 + 263j), delta=TOL)
self.assertAlmostEqual(path2.point(0.5), (325 + 275j), delta=TOL)
self.assertAlmostEqual(path2.point(0.9), (395.8 + 227j), delta=TOL)
self.assertAlmostEqual(path2.point(1), (400 + 200j), delta=TOL)
# M100,200 C100,100 400,100 400,200
path3 = CubicBezier(100 + 200j, 100 + 100j, 400 + 100j, 400 + 200j)
self.assertAlmostEqual(path3.point(0), (100 + 200j), delta=TOL)
self.assertAlmostEqual(path3.point(0.3), (164.8 + 137j), delta=TOL)
self.assertAlmostEqual(path3.point(0.5), (250 + 125j), delta=TOL)
self.assertAlmostEqual(path3.point(0.9), (391.6 + 173j), delta=TOL)
self.assertAlmostEqual(path3.point(1), (400 + 200j), delta=TOL)
# M100,500 C25,400 475,400 400,500
path4 = CubicBezier(100 + 500j, 25 + 400j, 475 + 400j, 400 + 500j)
self.assertAlmostEqual(path4.point(0), (100 + 500j), delta=TOL)
self.assertAlmostEqual(path4.point(0.3), (145.9 + 437j), delta=TOL)
self.assertAlmostEqual(path4.point(0.5), (250 + 425j), delta=TOL)
self.assertAlmostEqual(path4.point(0.9), (407.8 + 473j), delta=TOL)
self.assertAlmostEqual(path4.point(1), (400 + 500j), delta=TOL)
# M100,800 C175,700 325,700 400,800
path5 = CubicBezier(100 + 800j, 175 + 700j, 325 + 700j, 400 + 800j)
self.assertAlmostEqual(path5.point(0), (100 + 800j), delta=TOL)
self.assertAlmostEqual(path5.point(0.3), (183.7 + 737j), delta=TOL)
self.assertAlmostEqual(path5.point(0.5), (250 + 725j), delta=TOL)
self.assertAlmostEqual(path5.point(0.9), (375.4 + 773j), delta=TOL)
self.assertAlmostEqual(path5.point(1), (400 + 800j), delta=TOL)
# M600,200 C675,100 975,100 900,200
path6 = CubicBezier(600 + 200j, 675 + 100j, 975 + 100j, 900 + 200j)
self.assertAlmostEqual(path6.point(0), (600 + 200j), delta=TOL)
self.assertAlmostEqual(path6.point(0.3), (712.05 + 137j), delta=TOL)
self.assertAlmostEqual(path6.point(0.5), (806.25 + 125j), delta=TOL)
self.assertAlmostEqual(path6.point(0.9), (911.85 + 173j), delta=TOL)
self.assertAlmostEqual(path6.point(1), (900 + 200j), delta=TOL)
# M600,500 C600,350 900,650 900,500
path7 = CubicBezier(600 + 500j, 600 + 350j, 900 + 650j, 900 + 500j)
self.assertAlmostEqual(path7.point(0), (600 + 500j), delta=TOL)
self.assertAlmostEqual(path7.point(0.3), (664.8 + 462.2j), delta=TOL)
self.assertAlmostEqual(path7.point(0.5), (750 + 500j), delta=TOL)
self.assertAlmostEqual(path7.point(0.9), (891.6 + 532.4j), delta=TOL)
self.assertAlmostEqual(path7.point(1), (900 + 500j), delta=TOL)
# M600,800 C625,700 725,700 750,800
path8 = CubicBezier(600 + 800j, 625 + 700j, 725 + 700j, 750 + 800j)
self.assertAlmostEqual(path8.point(0), (600 + 800j), delta=TOL)
self.assertAlmostEqual(path8.point(0.3), (638.7 + 737j), delta=TOL)
self.assertAlmostEqual(path8.point(0.5), (675 + 725j), delta=TOL)
self.assertAlmostEqual(path8.point(0.9), (740.4 + 773j), delta=TOL)
self.assertAlmostEqual(path8.point(1), (750 + 800j), delta=TOL)
# S875,900 900,800
inversion = (750 + 800j) + (750 + 800j) - (725 + 700j)
path9 = CubicBezier(750 + 800j, inversion, 875 + 900j, 900 + 800j)
self.assertAlmostEqual(path9.point(0), (750 + 800j), delta=TOL)
self.assertAlmostEqual(path9.point(0.3), (788.7 + 863j), delta=TOL)
self.assertAlmostEqual(path9.point(0.5), (825 + 875j), delta=TOL)
self.assertAlmostEqual(path9.point(0.9), (890.4 + 827j), delta=TOL)
self.assertAlmostEqual(path9.point(1), (900 + 800j), delta=TOL)
def test_length(self):
# A straight line:
cub = CubicBezier(
complex(0, 0),
complex(0, 0),
complex(0, 100),
complex(0, 100)
)
self.assertAlmostEqual(cub.length(), 100, delta=TOL)
# A diagonal line:
cub = CubicBezier(
complex(0, 0),
complex(0, 0),
complex(100, 100),
complex(100, 100)
)
self.assertAlmostEqual(cub.length(), sqrt(2 * 100 * 100), delta=TOL)
# A quarter circle large_arc with radius 100
# http://www.whizkidtech.redprince.net/bezier/circle/
kappa = 4 * (sqrt(2) - 1) / 3
cub = CubicBezier(
complex(0, 0),
complex(0, kappa * 100),
complex(100 - kappa * 100, 100),
complex(100, 100)
)
# We can't compare with pi*50 here, because this is just an
# approximation of a circle large_arc. pi*50 is 157.079632679
# So this is just yet another "warn if this changes" test.
# This value is not verified to be correct.
self.assertAlmostEqual(cub.length(), 157.1016698, delta=TOL)
# A recursive solution has also been suggested, but for CubicBezier
# curves it could get a false solution on curves where the midpoint is
# on a straight line between the start and end. For example, the
# following curve would get solved as a straight line and get the
# length 300.
# Make sure this is not the case.
cub = CubicBezier(
complex(600, 500),
complex(600, 350),
complex(900, 650),
complex(900, 500)
)
self.assertTrue(cub.length() > 300.0)
def test_equality(self):
# This is to test the __eq__ and __ne__ methods, so we can't use
# assertEqual and assertNotEqual
segment = CubicBezier(complex(600, 500), complex(600, 350),
complex(900, 650), complex(900, 500))
self.assertTrue(segment ==
CubicBezier(600 + 500j, 600 + 350j, 900 + 650j, 900 + 500j))
self.assertTrue(segment !=
CubicBezier(600 + 501j, 600 + 350j, 900 + 650j, 900 + 500j))
self.assertTrue(segment != Line(0, 400))
class QuadraticBezierTest(unittest.TestCase):
def test_svg_examples(self):
"""These is the path in the SVG specs"""
# M200,300 Q400,50 600,300 T1000,300
path1 = QuadraticBezier(200 + 300j, 400 + 50j, 600 + 300j)
self.assertAlmostEqual(path1.point(0), (200 + 300j), delta=TOL)
self.assertAlmostEqual(path1.point(0.3), (320 + 195j), delta=TOL)
self.assertAlmostEqual(path1.point(0.5), (400 + 175j), delta=TOL)
self.assertAlmostEqual(path1.point(0.9), (560 + 255j), delta=TOL)
self.assertAlmostEqual(path1.point(1), (600 + 300j), delta=TOL)
# T1000, 300
inversion = (600 + 300j) + (600 + 300j) - (400 + 50j)
path2 = QuadraticBezier(600 + 300j, inversion, 1000 + 300j)
self.assertAlmostEqual(path2.point(0), (600 + 300j), delta=TOL)
self.assertAlmostEqual(path2.point(0.3), (720 + 405j), delta=TOL)
self.assertAlmostEqual(path2.point(0.5), (800 + 425j), delta=TOL)
self.assertAlmostEqual(path2.point(0.9), (960 + 345j), delta=TOL)
self.assertAlmostEqual(path2.point(1), (1000 + 300j), delta=TOL)
def test_length(self):
# expected results calculated with
# svg.path.segment_length(q, 0, 1, q.start, q.end, 1e-14, 20, 0)
q1 = QuadraticBezier(200 + 300j, 400 + 50j, 600 + 300j)
q2 = QuadraticBezier(200 + 300j, 400 + 50j, 500 + 200j)
closedq = QuadraticBezier(6+2j, 5-1j, 6+2j)
linq1 = QuadraticBezier(1, 2, 3)
linq2 = QuadraticBezier(1+3j, 2+5j, -9 - 17j)
nodalq = QuadraticBezier(1, 1, 1)
tests = [(q1, 487.77109389525975),
(q2, 379.90458193489155),
(closedq, 3.1622776601683795),
(linq1, 2),
(linq2, 22.73335777124786),
(nodalq, 0)]
for q, exp_res in tests:
self.assertAlmostEqual(q.length(), exp_res, delta=TOL)
# partial length tests
tests = [(q1, 212.34775387566032),
(q2, 166.22170622052397),
(closedq, 0.7905694150420949),
(linq1, 1.0),
(nodalq, 0.0)]
t0 = 0.25
t1 = 0.75
for q, exp_res in tests:
self.assertAlmostEqual(q.length(t0=t0, t1=t1), exp_res, delta=TOL)
# linear partial cases
linq2 = QuadraticBezier(1+3j, 2+5j, -9 - 17j)
tests = [(0, 1/24, 0.13975424859373725),
(0, 1/12, 0.1863389981249823),
(0, 0.5, 4.844813951249543),
(0, 1, 22.73335777124786),
(1/24, 1/12, 0.04658474953124506),
(1/24, 0.5, 4.705059702655722),
(1/24, 1, 22.59360352265412),
(1/12, 0.5, 4.658474953124562),
(1/12, 1, 22.54701877312288),
(0.5, 1, 17.88854381999832)]
for t0, t1, exp_s in tests:
self.assertAlmostEqual(linq2.length(t0=t0, t1=t1), exp_s, delta=TOL)
def test_equality(self):
# This is to test the __eq__ and __ne__ methods, so we can't use
# assertEqual and assertNotEqual
segment = QuadraticBezier(200 + 300j, 400 + 50j, 600 + 300j)
self.assertTrue(segment ==
QuadraticBezier(200 + 300j, 400 + 50j, 600 + 300j))
self.assertTrue(segment !=
QuadraticBezier(200 + 301j, 400 + 50j, 600 + 300j))
self.assertFalse(segment == Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j))
self.assertTrue(Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j) != segment)
class ArcTest(unittest.TestCase):
def test_trusting_acos(self):
"""`u1.real` is > 1 in this arc due to numerical error."""
try:
a1 = Arc(start=(160.197+102.925j),
radius=(0.025+0.025j),
rotation=0.0,
large_arc=False,
sweep=True,
end=(160.172+102.95j))
except ValueError:
self.fail("Arc() raised ValueError unexpectedly!")
def test_point(self):
arc1 = Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j)
self.assertAlmostEqual(arc1.center, 100 + 0j, delta=TOL)
self.assertAlmostEqual(arc1.theta, 180.0, delta=TOL)
self.assertAlmostEqual(arc1.delta, -90.0, delta=TOL)
self.assertAlmostEqual(arc1.point(0.0), 0j, delta=TOL)
self.assertAlmostEqual(arc1.point(0.1), (1.23116594049 + 7.82172325201j), delta=TOL)
self.assertAlmostEqual(arc1.point(0.2), (4.89434837048 + 15.4508497187j), delta=TOL)
self.assertAlmostEqual(arc1.point(0.3), (10.8993475812 + 22.699524987j), delta=TOL)
self.assertAlmostEqual(arc1.point(0.4), (19.0983005625 + 29.3892626146j), delta=TOL)
self.assertAlmostEqual(arc1.point(0.5), (29.2893218813 + 35.3553390593j), delta=TOL)
self.assertAlmostEqual(arc1.point(0.6), (41.2214747708 + 40.4508497187j), delta=TOL)
self.assertAlmostEqual(arc1.point(0.7), (54.6009500260 + 44.5503262094j), delta=TOL)
self.assertAlmostEqual(arc1.point(0.8), (69.0983005625 + 47.5528258148j), delta=TOL)
self.assertAlmostEqual(arc1.point(0.9), (84.3565534960 + 49.3844170298j), delta=TOL)
self.assertAlmostEqual(arc1.point(1.0), (100 + 50j), delta=TOL)
arc2 = Arc(0j, 100 + 50j, 0, 1, 0, 100 + 50j)
self.assertAlmostEqual(arc2.center, 50j, delta=TOL)
self.assertAlmostEqual(arc2.theta, -90.0, delta=TOL)
self.assertAlmostEqual(arc2.delta, -270.0, delta=TOL)
self.assertAlmostEqual(arc2.point(0.0), 0j, delta=TOL)
self.assertAlmostEqual(arc2.point(0.1), (-45.399049974 + 5.44967379058j), delta=TOL)
self.assertAlmostEqual(arc2.point(0.2), (-80.9016994375 + 20.6107373854j), delta=TOL)
self.assertAlmostEqual(arc2.point(0.3), (-98.7688340595 + 42.178276748j), delta=TOL)
self.assertAlmostEqual(arc2.point(0.4), (-95.1056516295 + 65.4508497187j), delta=TOL)
self.assertAlmostEqual(arc2.point(0.5), (-70.7106781187 + 85.3553390593j), delta=TOL)
self.assertAlmostEqual(arc2.point(0.6), (-30.9016994375 + 97.5528258148j), delta=TOL)
self.assertAlmostEqual(arc2.point(0.7), (15.643446504 + 99.3844170298j), delta=TOL)
self.assertAlmostEqual(arc2.point(0.8), (58.7785252292 + 90.4508497187j), delta=TOL)
self.assertAlmostEqual(arc2.point(0.9), (89.1006524188 + 72.699524987j), delta=TOL)
self.assertAlmostEqual(arc2.point(1.0), (100 + 50j), delta=TOL)
arc3 = Arc(0j, 100 + 50j, 0, 0, 1, 100 + 50j)
self.assertAlmostEqual(arc3.center, 50j, delta=TOL)
self.assertAlmostEqual(arc3.theta, -90.0, delta=TOL)
self.assertAlmostEqual(arc3.delta, 90.0, delta=TOL)
self.assertAlmostEqual(arc3.point(0.0), 0j, delta=TOL)
self.assertAlmostEqual(arc3.point(0.1), (15.643446504 + 0.615582970243j), delta=TOL)
self.assertAlmostEqual(arc3.point(0.2), (30.9016994375 + 2.44717418524j), delta=TOL)
self.assertAlmostEqual(arc3.point(0.3), (45.399049974 + 5.44967379058j), delta=TOL)
self.assertAlmostEqual(arc3.point(0.4), (58.7785252292 + 9.54915028125j), delta=TOL)
self.assertAlmostEqual(arc3.point(0.5), (70.7106781187 + 14.6446609407j), delta=TOL)
self.assertAlmostEqual(arc3.point(0.6), (80.9016994375 + 20.6107373854j), delta=TOL)
self.assertAlmostEqual(arc3.point(0.7), (89.1006524188 + 27.300475013j), delta=TOL)
self.assertAlmostEqual(arc3.point(0.8), (95.1056516295 + 34.5491502813j), delta=TOL)
self.assertAlmostEqual(arc3.point(0.9), (98.7688340595 + 42.178276748j), delta=TOL)
self.assertAlmostEqual(arc3.point(1.0), (100 + 50j), delta=TOL)
arc4 = Arc(0j, 100 + 50j, 0, 1, 1, 100 + 50j)
self.assertAlmostEqual(arc4.center, 100 + 0j, delta=TOL)
self.assertAlmostEqual(arc4.theta, 180.0, delta=TOL)
self.assertAlmostEqual(arc4.delta, 270.0, delta=TOL)
self.assertAlmostEqual(arc4.point(0.0), 0j, delta=TOL)
self.assertAlmostEqual(arc4.point(0.1), (10.8993475812 - 22.699524987j), delta=TOL)
self.assertAlmostEqual(arc4.point(0.2), (41.2214747708 - 40.4508497187j), delta=TOL)
self.assertAlmostEqual(arc4.point(0.3), (84.3565534960 - 49.3844170298j), delta=TOL)
self.assertAlmostEqual(arc4.point(0.4), (130.901699437 - 47.5528258148j), delta=TOL)
self.assertAlmostEqual(arc4.point(0.5), (170.710678119 - 35.3553390593j), delta=TOL)
self.assertAlmostEqual(arc4.point(0.6), (195.105651630 - 15.4508497187j), delta=TOL)
self.assertAlmostEqual(arc4.point(0.7), (198.768834060 + 7.82172325201j), delta=TOL)
self.assertAlmostEqual(arc4.point(0.8), (180.901699437 + 29.3892626146j), delta=TOL)
self.assertAlmostEqual(arc4.point(0.9), (145.399049974 + 44.5503262094j), delta=TOL)
self.assertAlmostEqual(arc4.point(1.0), (100 + 50j), delta=TOL)
arc5 = Arc((725.307482225571-915.5548199281527j),
(202.79421639137703+148.77294617167183j),
225.6910319606926, 1, 1,
(-624.6375539637027+896.5483089399895j))
self.assertAlmostEqual(arc5.point(0.0), (725.307482226-915.554819928j), delta=TOL)
self.assertAlmostEqual(arc5.point(0.0909090909091),
(1023.47397369-597.730444283j))
self.assertAlmostEqual(arc5.point(0.181818181818),
(1242.80253007-232.251400124j))
self.assertAlmostEqual(arc5.point(0.272727272727),
(1365.52445614+151.273373978j))
self.assertAlmostEqual(arc5.point(0.363636363636),
(1381.69755131+521.772981736j))
self.assertAlmostEqual(arc5.point(0.454545454545),
(1290.01156757+849.231748376j))
self.assertAlmostEqual(arc5.point(0.545454545455),
(1097.89435807+1107.12091209j))
self.assertAlmostEqual(arc5.point(0.636363636364),
(820.910116547+1274.54782658j))
self.assertAlmostEqual(arc5.point(0.727272727273),
(481.49845896+1337.94855893j))
self.assertAlmostEqual(arc5.point(0.818181818182),
(107.156499251+1292.18675889j))
self.assertAlmostEqual(arc5.point(0.909090909091),
(-271.788803303+1140.96977533j))
def test_length(self):
# I'll test the length calculations by making a circle, in two parts.
arc1 = Arc(0j, 100 + 100j, 0, 0, 0, 200 + 0j)
arc2 = Arc(200 + 0j, 100 + 100j, 0, 0, 0, 0j)
self.assertAlmostEqual(arc1.length(), pi * 100, delta=TOL)
self.assertAlmostEqual(arc2.length(), pi * 100, delta=TOL)
def test_equality(self):
# This is to test the __eq__ and __ne__ methods, so we can't use
# assertEqual and assertNotEqual
segment = Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j)
self.assertTrue(segment == Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j))
self.assertTrue(segment != Arc(0j, 100 + 50j, 0, 1, 0, 100 + 50j))
def test_point_to_t(self):
tol = 1e-4
a = Arc(start=(0+0j), radius=(5+5j), rotation=0.0, large_arc=True, sweep=True, end=(0+10j))
self.assertEqual(a.point_to_t(0+0j), 0.0)
self.assertAlmostEqual(a.point_to_t(5+5j), 0.5, delta=tol)
self.assertEqual(a.point_to_t(0+10j), 1.0)
self.assertIsNone(a.point_to_t(-5+5j))
self.assertIsNone(a.point_to_t(0+5j))
self.assertIsNone(a.point_to_t(1+0j))
self.assertIsNone(a.point_to_t(0-1j))
self.assertIsNone(a.point_to_t(0+11j))
a = Arc(start=(0+0j), radius=(5+5j), rotation=0.0, large_arc=True, sweep=False, end=(0+10j))
self.assertEqual(a.point_to_t(0+0j), 0.0)
self.assertAlmostEqual(a.point_to_t(-5+5j), 0.5, delta=tol)
self.assertEqual(a.point_to_t(0+10j), 1.0)
self.assertIsNone(a.point_to_t(5+5j))
self.assertIsNone(a.point_to_t(0+5j))
self.assertIsNone(a.point_to_t(1+0j))
self.assertIsNone(a.point_to_t(0-1j))
self.assertIsNone(a.point_to_t(0+11j))
a = Arc(start=(-10+0j), radius=(10+20j), rotation=0.0, large_arc=True, sweep=True, end=(10+0j))
self.assertEqual(a.point_to_t(-10+0j), 0.0)
self.assertAlmostEqual(a.point_to_t(0-20j), 0.5, delta=tol)
self.assertEqual(a.point_to_t(10+0j), 1.0)
self.assertIsNone(a.point_to_t(0+20j))
self.assertIsNone(a.point_to_t(-5+5j))
self.assertIsNone(a.point_to_t(0+5j))
self.assertIsNone(a.point_to_t(1+0j))
self.assertIsNone(a.point_to_t(0-1j))
self.assertIsNone(a.point_to_t(0+11j))
a = Arc(start=(100.834+27.987j), radius=(60.6+60.6j), rotation=0.0, large_arc=False, sweep=False, end=(40.234-32.613j))
self.assertEqual(a.point_to_t(100.834+27.987j), 0.0)
self.assertAlmostEqual(a.point_to_t(96.2210993246+4.7963831644j), 0.25, delta=tol)
self.assertAlmostEqual(a.point_to_t(83.0846703014-14.8636715784j), 0.50, delta=tol)
self.assertAlmostEqual(a.point_to_t(63.4246151671-28.0001000158j), 0.75, delta=tol)
self.assertEqual(a.point_to_t(40.234-32.613j), 1.00)
self.assertIsNone(a.point_to_t(-10+0j))
self.assertIsNone(a.point_to_t(0+0j))
a = Arc(start=(423.049961698-41.3779390229j), radius=(904.283878032+597.298520765j), rotation=0.0, large_arc=True, sweep=False, end=(548.984030235-312.385118044j))
orig_t = 0.854049465076
p = a.point(orig_t)
computed_t = a.point_to_t(p)
self.assertAlmostEqual(orig_t, computed_t, delta=TOL)
a = Arc(start=(-1-750j), radius=(750+750j), rotation=0.0, large_arc=True, sweep=False, end=1-750j)
self.assertAlmostEqual(a.point_to_t(730.5212132777968+169.8191111892562j), 0.71373858, delta=tol)
self.assertIsNone(a.point_to_t(730.5212132777968+169j))
self.assertIsNone(a.point_to_t(730.5212132777968+171j))
random.seed()
for arc_index in range(100):
a = random_arc()
for t_index in np.linspace(0, 1, 100):
orig_t = random.random()
p = a.point(orig_t)
computed_t = a.point_to_t(p)
msg = "arc %s at t=%f is point %s, but got %f back" \
"" % (a, orig_t, p, computed_t)
self.assertAlmostEqual(orig_t, computed_t, msg=msg, delta=tol)
def test_approx_quad(self):
n = 100
for i in range(n):
arc = random_arc()
if arc.radius.real > 2000 or arc.radius.imag > 2000:
continue # Random Arc too large, by autoscale.
path1 = Path(arc)
path2 = Path(*path1)
path2.approximate_arcs_with_quads(error=0.05)
d = abs(path1.length() - path2.length())
# Error less than 1% typically less than 0.5%
self.assertAlmostEqual(d, 0.0, delta=20)
def test_approx_cubic(self):
n = 100
for i in range(n):
arc = random_arc()
if arc.radius.real > 2000 or arc.radius.imag > 2000:
continue # Random Arc too large, by autoscale.
path1 = Path(arc)
path2 = Path(*path1)
path2.approximate_arcs_with_cubics(error=0.1)
d = abs(path1.length() - path2.length())
# Error less than 0.1% typically less than 0.001%
self.assertAlmostEqual(d, 0.0, delta=2)
class TestPath(unittest.TestCase):
def test_hash(self):
line1 = Line(600.5 + 350.5j, 650.5 + 325.5j)
arc1 = Arc(650 + 325j, 25 + 25j, -30, 0, 1, 700 + 300j)
arc2 = Arc(650 + 325j, 30 + 25j, -30, 0, 0, 700 + 300j)
cub1 = CubicBezier(650 + 325j, 25 + 25j, -30, 700 + 300j)
cub2 = CubicBezier(700 + 300j, 800 + 400j, 750 + 200j, 600 + 100j)
quad3 = QuadraticBezier(600 + 100j, 600, 600 + 300j)
linez = Line(600 + 300j, 600 + 350j)
bezpath = Path(line1, cub1, cub2, quad3)
bezpathz = Path(line1, cub1, cub2, quad3, linez)
path = Path(line1, arc1, cub2, quad3)
pathz = Path(line1, arc1, cub2, quad3, linez)
lpath = Path(linez)
qpath = Path(quad3)
cpath = Path(cub1)
apath = Path(arc1, arc2)
test_curves = [bezpath, bezpathz, path, pathz, lpath, qpath, cpath,
apath, line1, arc1, arc2, cub1, cub2, quad3, linez]
# this is necessary due to changes to the builtin `hash` function
user_hash_seed = os.environ.get("PYTHONHASHSEED", "")
os.environ["PYTHONHASHSEED"] = "314"
if version_info >= (3, 8):
expected_hashes = [
-6073024107272494569, -2519772625496438197, 8726412907710383506,
2132930052750006195, 3112548573593977871, 991446120749438306,
-5589397644574569777, -4438808571483114580, -3125333407400456536,
-4418099728831808951, 702646573139378041, -6331016786776229094,
5053050772929443013, 6102272282813527681, -5385294438006156225
]
elif (3, 2) <= version_info < (3, 8):
expected_hashes = [
-5662973462929734898, 5166874115671195563, 5223434942701471389,
-7224979960884350294, -5178990533869800243, -4003140762934044601,
8575549467429100514, -6692132994808317852, 1594848578230132678,
-6374833902132909499, 4188352014604112779, -5090374009174854814,
-7093907105533857815, 2036243740727202243, -8108488067585685407
]
else:
expected_hashes = [
-5762846476463470127, -138736730317965290, -2005041722222729058,
8448700906794235291, -5178990533869800243, -4003140762934044601,
8575549467429100514, 5166859065265868968, 1373103287265872323,
-1022491904150314631, 4188352014604112779, -5090374009174854814,
-7093907105533857815, 2036243740727202243, -8108488067585685407
]
if version_info.major == 2 and os.name == 'nt':
# the expected hash values for 2.7 apparently differed on Windows
# if you work in Windows and want to fix this test, please do
return
for c, h in zip(test_curves, expected_hashes):
self.assertTrue(hash(c) == h, msg="hash {} was expected for curve = {}".format(h, c))
os.environ["PYTHONHASHSEED"] = user_hash_seed # restore user's hash seed
def test_circle(self):
arc1 = Arc(0j, 100 + 100j, 0, 0, 0, 200 + 0j)
arc2 = Arc(200 + 0j, 100 + 100j, 0, 0, 0, 0j)
path = Path(arc1, arc2)
self.assertAlmostEqual(path.point(0.0), 0j, delta=TOL)
self.assertAlmostEqual(path.point(0.25), (100 + 100j), delta=TOL)
self.assertAlmostEqual(path.point(0.5), (200 + 0j), delta=TOL)
self.assertAlmostEqual(path.point(0.75), (100 - 100j), delta=TOL)
self.assertAlmostEqual(path.point(1.0), 0j, delta=TOL)
self.assertAlmostEqual(path.length(), pi * 200, delta=TOL)
def test_svg_specs(self):
"""The paths that are in the SVG specs"""
# Big pie: M300,200 h-150 a150,150 0 1,0 150,-150 z
path = Path(Line(300 + 200j, 150 + 200j),
Arc(150 + 200j, 150 + 150j, 0, 1, 0, 300 + 50j),
Line(300 + 50j, 300 + 200j))
# The points and length for this path are calculated and not
# regression tests.
self.assertAlmostEqual(path.point(0.0), (300 + 200j), delta=TOL)
self.assertAlmostEqual(path.point(0.14897825542), (150 + 200j), delta=TOL)
self.assertAlmostEqual(path.point(0.5), (406.066017177 + 306.066017177j), delta=TOL)
self.assertAlmostEqual(path.point(1 - 0.14897825542), (300 + 50j), delta=TOL)
self.assertAlmostEqual(path.point(1.0), (300 + 200j), delta=TOL)
# The errors seem to accumulate. Still 6 decimal places is more
# than good enough.
self.assertAlmostEqual(path.length(), pi * 225 + 300, places=6)
# Little pie: M275,175 v-150 a150,150 0 0,0 -150,150 z
path = Path(Line(275 + 175j, 275 + 25j),
Arc(275 + 25j, 150 + 150j, 0, 0, 0, 125 + 175j),
Line(125 + 175j, 275 + 175j))
# The points and length for this path are calculated and not
# regression tests.
self.assertAlmostEqual(path.point(0.0), (275 + 175j), delta=TOL)
self.assertAlmostEqual(path.point(0.2800495767557787), (275 + 25j), delta=TOL)
self.assertAlmostEqual(path.point(0.5),
(168.93398282201787 + 68.93398282201787j))
self.assertAlmostEqual(path.point(1 - 0.2800495767557787), (125 + 175j), delta=TOL)
self.assertAlmostEqual(path.point(1.0), (275 + 175j), delta=TOL)
# The errors seem to accumulate. Still 6 decimal places is more
# than good enough.
self.assertAlmostEqual(path.length(), pi * 75 + 300, places=6)
# Bumpy path: M600,350 l 50,-25
# a25,25 -30 0,1 50,-25 l 50,-25
# a25,50 -30 0,1 50,-25 l 50,-25
# a25,75 -30 0,1 50,-25 l 50,-25
# a25,100 -30 0,1 50,-25 l 50,-25
# Commented out because by Andy cause I was skeptical of path.point
# ground truth values
# path = Path(Line(600 + 350j, 650 + 325j),
# Arc(650 + 325j, 25 + 25j, -30, 0, 1, 700 + 300j),
# Line(700 + 300j, 750 + 275j),
# Arc(750 + 275j, 25 + 50j, -30, 0, 1, 800 + 250j),
# Line(800 + 250j, 850 + 225j),
# Arc(850 + 225j, 25 + 75j, -30, 0, 1, 900 + 200j),
# Line(900 + 200j, 950 + 175j),
# Arc(950 + 175j, 25 + 100j, -30, 0, 1, 1000 + 150j),
# Line(1000 + 150j, 1050 + 125j),
# )
# # These are *not* calculated, but just regression tests. Be skeptical.
# self.assertAlmostEqual(path.point(0), (600+350j), delta=TOL)
# self.assertAlmostEqual(path.point(0.3), (755.239799276+212.182020958j), delta=TOL)
# self.assertAlmostEqual(path.point(0.5), (827.730749264+147.824157418j), delta=TOL)
# self.assertAlmostEqual(path.point(0.9), (971.284357806+106.302352605j), delta=TOL)
# self.assertAlmostEqual(path.point(1), (1050+125j), delta=TOL)
# # The errors seem to accumulate. Still 6 decimal places is more
# # than good enough.
# self.assertAlmostEqual(path.length(), 928.3886394081095, delta=TOL)
def test_repr(self):
path = Path(
Line(start=600 + 350j, end=650 + 325j),
Arc(start=650 + 325j, radius=25 + 25j, rotation=-30,
large_arc=0, sweep=1, end=700 + 300j),
CubicBezier(start=700 + 300j, control1=800 + 400j,
control2=750 + 200j, end=600 + 100j),
QuadraticBezier(start=600 + 100j, control=600, end=600 + 300j))
self.assertEqual(eval(repr(path)), path)
def test_equality(self):
# This is to test the __eq__ and __ne__ methods, so we can't use
# assertEqual and assertNotEqual
path1 = Path(
Line(start=600 + 350j, end=650 + 325j),
Arc(start=650 + 325j, radius=25 + 25j, rotation=-30,
large_arc=0, sweep=1, end=700 + 300j),
CubicBezier(start=700 + 300j, control1=800 + 400j,
control2=750 + 200j, end=600 + 100j),
QuadraticBezier(start=600 + 100j, control=600, end=600 + 300j))
path2 = Path(
Line(start=600 + 350j, end=650 + 325j),
Arc(start=650 + 325j, radius=25 + 25j, rotation=-30,
large_arc=0, sweep=1, end=700 + 300j),
CubicBezier(start=700 + 300j, control1=800 + 400j,
control2=750 + 200j, end=600 + 100j),
QuadraticBezier(start=600 + 100j, control=600, end=600 + 300j))
self.assertTrue(path1 == path2)
# Modify path2:
path2[0].start = 601 + 350j
self.assertTrue(path1 != path2)
# Modify back:
path2[0].start = 600 + 350j
self.assertFalse(path1 != path2)
# Get rid of the last segment:
del path2[-1]
self.assertFalse(path1 == path2)
# It's not equal to a list of it's segments
self.assertTrue(path1 != path1[:])
self.assertFalse(path1 == path1[:])
def test_continuous_subpaths(self):
"""Test the Path.continuous_subpaths() method."""
# Continuous and open example
q = Path(Line(1, 2))
a = [Path(Line(1, 2))]
subpaths = q.continuous_subpaths()
chk1 = all(subpath.iscontinuous() for subpath in subpaths)
chk2 = (q == Path(*[seg for subpath in subpaths for seg in subpath]))
self.assertTrue(subpaths == a)
self.assertTrue(chk1)
self.assertTrue(chk2)
# # Continuous and closed example
q = Path(Line(1, 2), Line(2, 1))
a = [Path(Line(1, 2), Line(2, 1))]
subpaths = q.continuous_subpaths()
chk1 = all(subpath.iscontinuous() for subpath in subpaths)
chk2 = q == Path(*[seg for subpath in subpaths for seg in subpath])
self.assertTrue(subpaths == a)
self.assertTrue(chk1)
self.assertTrue(chk2)
# Continuous and open example
q = Path(Line(1, 2), Line(2, 3), Line(3, 4))
a = [Path(Line(1, 2), Line(2, 3), Line(3, 4))]
subpaths = q.continuous_subpaths()
chk1 = all(subpath.iscontinuous() for subpath in subpaths)
chk2 = (q == Path(*[seg for subpath in subpaths for seg in subpath]))
self.assertTrue(subpaths == a)
self.assertTrue(chk1)
self.assertTrue(chk2)
# Continuous and closed example
q = Path(Line(1, 2), Line(2, 3), Line(3, 4), Line(4, 1))
a = [Path(Line(1, 2), Line(2, 3), Line(3, 4), Line(4, 1))]
subpaths = q.continuous_subpaths()
chk1 = all(subpath.iscontinuous() for subpath in subpaths)
chk2 = (q == Path(*[seg for subpath in subpaths for seg in subpath]))
self.assertTrue(subpaths == a)
self.assertTrue(chk1)
self.assertTrue(chk2)
# Discontinuous example
q = Path(Line(1, 2), Line(2, 3), Line(3, 4),
Line(10, 11))
a = [Path(Line(1, 2), Line(2, 3), Line(3, 4)),
Path(Line(10, 11))]
subpaths = q.continuous_subpaths()
chk1 = all(subpath.iscontinuous() for subpath in subpaths)
chk2 = (q == Path(*[seg for subpath in subpaths for seg in subpath]))
self.assertTrue(subpaths == a)
self.assertTrue(chk1)
self.assertTrue(chk2)
# Discontinuous closed example
q = Path(Line(1, 2), Line(2, 3), Line(3, 4), Line(4, 1),
Line(10, 11), Line(11, 12))
a = [Path(Line(1, 2), Line(2, 3), Line(3, 4), Line(4, 1)),
Path(Line(10, 11), Line(11, 12))]
subpaths = q.continuous_subpaths()
chk1 = all(subpath.iscontinuous() for subpath in subpaths)
chk2 = (q == Path(*[seg for subpath in subpaths for seg in subpath]))
self.assertTrue(subpaths == a)
self.assertTrue(chk1)
self.assertTrue(chk2)
# Discontinuous example
q = Path(Line(1, 2),
Line(1, 2), Line(2, 3),
Line(10, 11), Line(11, 12), Line(12, 13),
Line(10, 11), Line(11, 12), Line(12, 13), Line(13, 14))
a = [Path(Line(1, 2)),
Path(Line(1, 2), Line(2, 3)),
Path(Line(10, 11), Line(11, 12), Line(12, 13)),
Path(Line(10, 11), Line(11, 12), Line(12, 13), Line(13, 14))]
subpaths = q.continuous_subpaths()
chk1 = all(subpath.iscontinuous() for subpath in subpaths)
chk2 = (q == Path(*[seg for subpath in subpaths for seg in subpath]))
self.assertTrue(subpaths == a)
self.assertTrue(chk1)
self.assertTrue(chk2)
# Discontinuous example with overlapping end
q = Path(Line(1, 2),
Line(5, 6), Line(6, 7),
Line(10, 11), Line(11, 12), Line(12, 13),
Line(10, 11), Line(11, 12), Line(12, 13), Line(13, 1))
a = [Path(Line(1, 2)),
Path(Line(5, 6), Line(6, 7)),
Path(Line(10, 11), Line(11, 12), Line(12, 13)),
Path(Line(10, 11), Line(11, 12), Line(12, 13), Line(13, 1))]
subpaths = q.continuous_subpaths()
chk1 = all(subpath.iscontinuous() for subpath in subpaths)
chk2 = (q == Path(*[seg for subpath in subpaths for seg in subpath]))
self.assertTrue(subpaths == a)
self.assertTrue(chk1)
self.assertTrue(chk2)
def test_cropped(self):
p_closed = Path(Line(0, 1), Line(1, 1 + 1j), Line(1 + 1j, 1j),
Line(1j, 0))
first_half = Path(Line(0, 1), Line(1, 1 + 1j))
second_half = Path(Line(1 + 1j, 1j), Line(1j, 0))
middle_half = Path(Line(1, 1 + 1j), Line(1 + 1j, 1j))
other_middle_half = Path(Line(1j, 0), Line(0, 1))
self.assertTrue(p_closed.cropped(0, 0.5) == first_half)
self.assertTrue(p_closed.cropped(1, 0.5) == first_half)
self.assertTrue(p_closed.cropped(.5, 1) == second_half)
self.assertTrue(p_closed.cropped(0.25, 0.75) == middle_half)
self.assertTrue(p_closed.cropped(0.75, 0.25) == other_middle_half)
with self.assertRaises(AssertionError):
p_closed.cropped(1, 0)
with self.assertRaises(AssertionError):
p_closed.cropped(.5, 1.1)
with self.assertRaises(AssertionError):
p_closed.cropped(-0.1, 0.1)
p_open = Path(Line(0, 1), Line(1, 1 + 1j), Line(1 + 1j, 1j),
Line(1j, 2j))
self.assertTrue(p_open.cropped(0, 0.5) == first_half)
with self.assertRaises(ValueError):
p_open.cropped(.75, .25)
with self.assertRaises(ValueError):
p_open.cropped(1, .25)
with self.assertRaises(AssertionError):
p_open.cropped(1, 0)
def test_transform_scale(self):
line1 = Line(600.5 + 350.5j, 650.5 + 325.5j)
arc1 = Arc(650 + 325j, 25 + 25j, -30, 0, 1, 700 + 300j)
arc2 = Arc(650 + 325j, 30 + 25j, -30, 0, 0, 700 + 300j)
cub1 = CubicBezier(650 + 325j, 25 + 25j, -30, 700 + 300j)
cub2 = CubicBezier(700 + 300j, 800 + 400j, 750 + 200j, 600 + 100j)
quad3 = QuadraticBezier(600 + 100j, 600, 600 + 300j)
linez = Line(600 + 300j, 600 + 350j)
bezpath = Path(line1, cub1, cub2, quad3)
bezpathz = Path(line1, cub1, cub2, quad3, linez)
path = Path(line1, arc1, cub2, quad3)
pathz = Path(line1, arc1, cub2, quad3, linez)
lpath = Path(linez)
qpath = Path(quad3)
cpath = Path(cub1)
apath = Path(arc1, arc2)
test_curves = [bezpath, bezpathz, path, pathz, lpath, qpath, cpath,
apath, line1, arc1, arc2, cub1, cub2, quad3, linez]
def scale_a_point(pt, sx, sy=None, origin=0j):
if sy is None:
sy = sx
zeta = pt - origin
pt_vec = [[zeta.real],
[zeta.imag],
[1]]
transform = [[sx, 0, origin.real],
[0, sy, origin.imag]]
return complex(*np.dot(transform, pt_vec).ravel())
for curve in test_curves:
# generate a random point and a random scaling
t = np.random.rand()
pt = curve.point(t)
# random diagonal transformation
sx = 2 * np.random.rand()
sy = 2 * np.random.rand()
# random origin
origin = (10 * (np.random.rand() - 0.5) +
10j * (np.random.rand() - 0.5))
# Note: `sx != sy` cases are not implemented for `Arc` objects
has_arc = (isinstance(curve, Arc) or
isinstance(curve, Path) and
any(isinstance(seg, Arc) for seg in curve))
# find seg which t lands on for failure reporting
seg = curve
if isinstance(curve, Path):
seg_idx, seg_t = curve.T2t(t)
seg = curve[seg_idx]
_fail_msg = "Failure!\nseg {}\n".format(seg)
# case where no `sy` and no `origin` given
curve_scaled = curve.scaled(sx)
if isinstance(curve, Path):
res = curve_scaled[seg_idx].point(seg_t)
else:
res = curve_scaled.point(t)
ans = scale_a_point(pt, sx, None)
fail_msg = _fail_msg + ("curve.scaled({}, {}, {}) = \n{}\n"
"".format(sx, None, None, curve_scaled))
fail_msg += "seg_scaled.point({}) = {}\n".format(seg_t, res)
fail_msg += "ans = {}".format(ans)
self.assertAlmostEqual(ans, res, places=4, msg=fail_msg)
# case where random `origin` given but no `sy`
ans = scale_a_point(pt, sx, None, origin)
curve_scaled = curve.scaled(sx, origin=origin)
if isinstance(curve, Path):
res = curve_scaled[seg_idx].point(seg_t)
else:
res = curve_scaled.point(t)
fail_msg = _fail_msg + ("curve.scaled({}, {}, {}) = \n{}\n"
"".format(sx, None, origin, curve_scaled))
fail_msg += "seg_scaled.point({}) = {}\n".format(seg_t, res)
fail_msg += "ans = {}".format(ans)
self.assertAlmostEqual(ans, res, places=4, msg=fail_msg)
# case where `sx != sy`, and no `origin` given
ans = scale_a_point(pt, sx, sy)
if has_arc: # the cases with sx != sy are not yet imp for arcs
with self.assertRaises(Exception):
curve.scaled(sx, sy).point(t)
else:
curve_scaled = curve.scaled(sx, sy)
seg_scaled = seg.scaled(sx, sy)
if isinstance(curve, Path):
res = curve_scaled[seg_idx].point(seg_t)
else:
res = curve_scaled.point(t)
fail_msg = _fail_msg + ("curve.scaled({}, {}, {}) = \n{}\n"
"".format(sx, sy, None, curve_scaled))
fail_msg += "seg_scaled.point({}) = {}\n".format(seg_t, res)
fail_msg += "ans = {}".format(ans)
self.assertAlmostEqual(ans, res, places=4, msg=fail_msg)
# case where `sx != sy`, and random `origin` given
ans = scale_a_point(pt, sx, sy, origin)
if has_arc: # the cases with sx != sy are not yet imp for arcs
with self.assertRaises(Exception):
curve.scaled(sx, sy, origin).point(t)
else:
curve_scaled = curve.scaled(sx, sy, origin)
if isinstance(curve, Path):
res = curve_scaled[seg_idx].point(seg_t)
else:
res = curve_scaled.point(t)
fail_msg = _fail_msg + ("curve.scaled({}, {}, {}) = \n{}\n"
"".format(sx, sy, origin, curve_scaled))
fail_msg += "seg_scaled.point({}) = {}\n".format(seg_t, res)
fail_msg += "ans = {}".format(ans)
self.assertAlmostEqual(ans, res, places=4, msg=fail_msg)
# more tests for scalar (i.e. `sx == sy`) case
for curve in test_curves:
# scale by 2 around (100, 100)
scaled_curve = curve.scaled(2.0, origin=complex(100, 100))
# expected length
len_orig = curve.length()
len_trns = scaled_curve.length()
self.assertAlmostEqual(len_orig * 2.0, len_trns, delta=TOL)
# expected positions
for T in np.linspace(0.0, 1.0, num=100):
pt_orig = curve.point(T)
pt_trns = scaled_curve.point(T)
pt_xpct = (pt_orig - complex(100, 100)) * 2.0 + complex(100, 100)
self.assertAlmostEqual(pt_xpct, pt_trns, delta=TOL)
# scale by 0.3 around (0, -100)
# the 'almost equal' test fails at the 7th decimal place for
# some length and position tests here.
scaled_curve = curve.scaled(0.3, origin=complex(0, -100))
# expected length
len_orig = curve.length()
len_trns = scaled_curve.length()
self.assertAlmostEqual(len_orig * 0.3, len_trns, delta=0.000001)
# expected positions
for T in np.linspace(0.0, 1.0, num=100):
pt_orig = curve.point(T)
pt_trns = scaled_curve.point(T)
pt_xpct = (pt_orig - complex(0, -100)) * 0.3 + complex(0, -100)
self.assertAlmostEqual(pt_xpct, pt_trns, delta=0.000001)
def test_d(self):
# the following two path represent the same path but in absolute and relative forms
abs_s = 'M 38.0,130.0 C 37.0,132.0 38.0,136.0 40.0,137.0 L 85.0,161.0 C 87.0,162.0 91.0,162.0 93.0,160.0 L 127.0,133.0 C 129.0,131.0 129.0,128.0 127.0,126.0 L 80.0,70.0 C 78.0,67.0 75.0,68.0 74.0,70.0 Z'
rel_s = 'm 38.0,130.0 c -1.0,2.0 0.0,6.0 2.0,7.0 l 45.0,24.0 c 2.0,1.0 6.0,1.0 8.0,-1.0 l 34.0,-27.0 c 2.0,-2.0 2.0,-5.0 0.0,-7.0 l -47.0,-56.0 c -2.0,-3.0 -5.0,-2.0 -6.0,0.0 z'
path1 = parse_path(abs_s)
path2 = parse_path(rel_s)
self.assertEqual(path1.d(use_closed_attrib=True), abs_s)
self.assertEqual(path2.d(use_closed_attrib=True), abs_s)
self.assertEqual(path1.d(use_closed_attrib=True, rel=True), rel_s)
self.assertEqual(path2.d(use_closed_attrib=True, rel=True), rel_s)
class Test_ilength(unittest.TestCase):
# See svgpathtools.notes.inv_arclength.py for information on how these
# test values were generated (using the .length() method).
##############################################################
def test_ilength_lines(self):
l = Line(1, 3-1j)
nodall = Line(1+1j, 1+1j)
tests = [(l, 0.01, 0.022360679774997897),
(l, 0.1, 0.223606797749979),
(l, 0.5, 1.118033988749895),
(l, 0.9, 2.012461179749811),
(l, 0.99, 2.213707297724792)]
for (l, t, s) in tests:
self.assertAlmostEqual(l.ilength(s), t, delta=TOL)
def test_ilength_quadratics(self):
q1 = QuadraticBezier(200 + 300j, 400 + 50j, 600 + 300j)
q2 = QuadraticBezier(200 + 300j, 400 + 50j, 500 + 200j)
closedq = QuadraticBezier(6 + 2j, 5 - 1j, 6 + 2j)
linq = QuadraticBezier(1+3j, 2+5j, -9 - 17j)
nodalq = QuadraticBezier(1, 1, 1)
tests = [(q1, 0.01, 6.364183310105577),
(q1, 0.1, 60.23857499635088),
(q1, 0.5, 243.8855469477619),
(q1, 0.9, 427.53251889917294),
(q1, 0.99, 481.40691058541813),
(q2, 0.01, 6.365673533661836),
(q2, 0.1, 60.31675895732397),
(q2, 0.5, 233.24592830045907),
(q2, 0.9, 346.42891253298706),
(q2, 0.99, 376.32659156736844),
(closedq, 0.01, 0.06261309767133393),
(closedq, 0.1, 0.5692099788303084),
(closedq, 0.5, 1.5811388300841898),
(closedq, 0.9, 2.5930676813380713),
(closedq, 0.99, 3.0996645624970456),
(linq, 0.01, 0.04203807797699605),
(linq, 0.1, 0.19379255804998186),
(linq, 0.5, 4.844813951249544),
(linq, 0.9, 18.0823363780483),
(linq, 0.99, 22.24410609777091)]
for q, t, s in tests:
try:
self.assertAlmostEqual(q.ilength(s), t, delta=TOL)
except:
print(q)
print(s)
print(t)
raise
def test_ilength_cubics(self):
c1 = CubicBezier(200 + 300j, 400 + 50j, 600+100j, -200)
symc = CubicBezier(1-2j, 10-1j, 10+1j, 1+2j)
closedc = CubicBezier(1-2j, 10-1j, 10+1j, 1-2j)
tests = [(c1, 0.01, 9.53434737943073),
(c1, 0.1, 88.89941848775852),
(c1, 0.5, 278.5750942713189),
(c1, 0.9, 651.4957786584646),
(c1, 0.99, 840.2010603832538),
(symc, 0.01, 0.2690118556702902),
(symc, 0.1, 2.45230693868727),
(symc, 0.5, 7.256147083644424),
(symc, 0.9, 12.059987228602886),
(symc, 0.99, 14.243282311619401),
(closedc, 0.01, 0.26901140075538765),
(closedc, 0.1, 2.451722765460998),
(closedc, 0.5, 6.974058969750422),
(closedc, 0.9, 11.41781741489913),
(closedc, 0.99, 13.681324783697782)]
for (c, t, s) in tests:
self.assertAlmostEqual(c.ilength(s), t, delta=TOL)
def test_ilength_arcs(self):
arc1 = Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j)
arc2 = Arc(0j, 100 + 50j, 0, 1, 0, 100 + 50j)
arc3 = Arc(0j, 100 + 50j, 0, 0, 1, 100 + 50j)
arc4 = Arc(0j, 100 + 50j, 0, 1, 1, 100 + 50j)
arc5 = Arc(0j, 100 + 100j, 0, 0, 0, 200 + 0j)
arc6 = Arc(200 + 0j, 100 + 100j, 0, 0, 0, 0j)
arc7 = Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j)
tests = [(arc1, 0.01, 0.785495042476231),
(arc1, 0.1, 7.949362877455911),
(arc1, 0.5, 48.28318721111137),
(arc1, 0.9, 105.44598206942156),
(arc1, 0.99, 119.53485487631241),
(arc2, 0.01, 4.71108115728524),
(arc2, 0.1, 45.84152747676626),
(arc2, 0.5, 169.38878996795734),
(arc2, 0.9, 337.44707303579696),
(arc2, 0.99, 360.95800139278765),
(arc3, 0.01, 1.5707478805335624),
(arc3, 0.1, 15.659620687424416),
(arc3, 0.5, 72.82241554573457),
(arc3, 0.9, 113.15623987939003),
(arc3, 0.99, 120.3201077143697),
(arc4, 0.01, 2.3588068777503897),
(arc4, 0.1, 25.869735234740887),
(arc4, 0.5, 193.9280183025816),
(arc4, 0.9, 317.4752807937718),
(arc4, 0.99, 358.6057271132536),
(arc5, 0.01, 3.141592653589793),
(arc5, 0.1, 31.415926535897935),
(arc5, 0.5, 157.07963267948966),
(arc5, 0.9, 282.7433388230814),
(arc5, 0.99, 311.01767270538954),
(arc6, 0.01, 3.141592653589793),
(arc6, 0.1, 31.415926535897928),
(arc6, 0.5, 157.07963267948966),
(arc6, 0.9, 282.7433388230814),
(arc6, 0.99, 311.01767270538954),
(arc7, 0.01, 0.785495042476231),
(arc7, 0.1, 7.949362877455911),
(arc7, 0.5, 48.28318721111137),
(arc7, 0.9, 105.44598206942156),
(arc7, 0.99, 119.53485487631241)]
for (c, t, s) in tests:
self.assertAlmostEqual(c.ilength(s), t, delta=TOL)
def test_ilength_paths(self):
line1 = Line(600 + 350j, 650 + 325j)
arc1 = Arc(650 + 325j, 25 + 25j, -30, 0, 1, 700 + 300j)
cub1 = CubicBezier(650 + 325j, 25 + 25j, -30, 700 + 300j)
cub2 = CubicBezier(700 + 300j, 800 + 400j, 750 + 200j, 600 + 100j)
quad3 = QuadraticBezier(600 + 100j, 600, 600 + 300j)
linez = Line(600 + 300j, 600 + 350j)
bezpath = Path(line1, cub1, cub2, quad3)
bezpathz = Path(line1, cub1, cub2, quad3, linez)
path = Path(line1, arc1, cub2, quad3)
pathz = Path(line1, arc1, cub2, quad3, linez)
lpath = Path(linez)
qpath = Path(quad3)
cpath = Path(cub1)
apath = Path(arc1)
tests = [(bezpath, 0.0, 0.0),
(bezpath, 0.1111111111111111, 286.2533595149515),
(bezpath, 0.2222222222222222, 503.8620222915423),
(bezpath, 0.3333333333333333, 592.6337135346268),
(bezpath, 0.4444444444444444, 644.3880677233315),
(bezpath, 0.5555555555555556, 835.0384185011363),
(bezpath, 0.6666666666666666, 1172.8729938994575),
(bezpath, 0.7777777777777778, 1308.6205983178952),
(bezpath, 0.8888888888888888, 1532.8473168900994),
(bezpath, 1.0, 1758.2427369258733),
(bezpathz, 0.0, 0.0),
(bezpathz, 0.1111111111111111, 294.15942308605435),
(bezpathz, 0.2222222222222222, 512.4295461513882),
(bezpathz, 0.3333333333333333, 594.0779370040138),
(bezpathz, 0.4444444444444444, 658.7361976564598),
(bezpathz, 0.5555555555555556, 874.1674336581542),
(bezpathz, 0.6666666666666666, 1204.2371344392693),
(bezpathz, 0.7777777777777778, 1356.773042865213),
(bezpathz, 0.8888888888888888, 1541.808492602876),
(bezpathz, 1.0, 1808.2427369258733),
(path, 0.0, 0.0),
(path, 0.1111111111111111, 81.44016397108298),
(path, 0.2222222222222222, 164.72556816469307),
(path, 0.3333333333333333, 206.71343564679154),
(path, 0.4444444444444444, 265.4898349999353),
(path, 0.5555555555555556, 367.5420981413199),
(path, 0.6666666666666666, 487.29863861165995),
(path, 0.7777777777777778, 511.84069655405284),
(path, 0.8888888888888888, 579.9530841780238),
(path, 1.0, 732.9614757397469),
(pathz, 0.0, 0.0),
(pathz, 0.1111111111111111, 86.99571952663854),
(pathz, 0.2222222222222222, 174.33662608180325),
(pathz, 0.3333333333333333, 214.42194393858466),
(pathz, 0.4444444444444444, 289.94661033436205),
(pathz, 0.5555555555555556, 408.38391100702125),
(pathz, 0.6666666666666666, 504.4309373835351),
(pathz, 0.7777777777777778, 533.774834546298),
(pathz, 0.8888888888888888, 652.931321760894),
(pathz, 1.0, 782.9614757397469),
(lpath, 0.0, 0.0),
(lpath, 0.1111111111111111, 5.555555555555555),
(lpath, 0.2222222222222222, 11.11111111111111),
(lpath, 0.3333333333333333, 16.666666666666664),
(lpath, 0.4444444444444444, 22.22222222222222),
(lpath, 0.5555555555555556, 27.77777777777778),
(lpath, 0.6666666666666666, 33.33333333333333),
(lpath, 0.7777777777777778, 38.88888888888889),
(lpath, 0.8888888888888888, 44.44444444444444),
(lpath, 1.0, 50.0),
(qpath, 0.0, 0.0),
(qpath, 0.1111111111111111, 17.28395061728395),
(qpath, 0.2222222222222222, 24.69135802469136),
(qpath, 0.3333333333333333, 27.777777777777786),
(qpath, 0.4444444444444444, 40.12345679012344),
(qpath, 0.5555555555555556, 62.3456790123457),
(qpath, 0.6666666666666666, 94.44444444444446),
(qpath, 0.7777777777777778, 136.41975308641975),
(qpath, 0.8888888888888888, 188.27160493827154),
(qpath, 1.0, 250.0),
(cpath, 0.0, 0.0),
(cpath, 0.1111111111111111, 207.35525375551356),
(cpath, 0.2222222222222222, 366.0583590267552),
(cpath, 0.3333333333333333, 474.34064293812787),
(cpath, 0.4444444444444444, 530.467036317684),
(cpath, 0.5555555555555556, 545.0444351253911),
(cpath, 0.6666666666666666, 598.9767847757622),
(cpath, 0.7777777777777778, 710.4080903390646),
(cpath, 0.8888888888888888, 881.1796899225557),
(cpath, 1.0, 1113.0914444911352),
(apath, 0.0, 0.0),
(apath, 0.1111111111111111, 9.756687033889872),
(apath, 0.2222222222222222, 19.51337406777974),
(apath, 0.3333333333333333, 29.27006110166961),
(apath, 0.4444444444444444, 39.02674813555948),
(apath, 0.5555555555555556, 48.783435169449355),
(apath, 0.6666666666666666, 58.54012220333922),
(apath, 0.7777777777777778, 68.2968092372291),
(apath, 0.8888888888888888, 78.05349627111896),
(apath, 1.0, 87.81018330500885)]
for (c, t, s) in tests:
try:
self.assertAlmostEqual(c.ilength(s), t, msg=str((c, t, s)), delta=TOL)
except:
# These test case values were generated using a system
# with scipy installed -- if scipy is not installed,
# then in cases where `t == 1`, `s` may be slightly
# greater than the length computed previously.
# Thus this try/except block exists as a workaround.
if c.length() < s:
with self.assertRaises(ValueError):
c.ilength(s)
else:
raise
# Exceptional Cases
def test_ilength_exceptions(self):
nodalq = QuadraticBezier(1, 1, 1)
with self.assertRaises(AssertionError):
nodalq.ilength(1)
lin = Line(0, 0.5j)
with self.assertRaises(ValueError):
lin.ilength(1)
class Test_intersect(unittest.TestCase):
def test_intersect(self):
###################################################################
# test that `some_seg.intersect(another_seg)` will produce properly
# ordered tuples, i.e. the first element in each tuple refers to
# `some_seg` and the second element refers to `another_seg`.
# Also tests that the correct number of intersections is found.
a = Line(0 + 200j, 300 + 200j)
b = QuadraticBezier(40 + 150j, 70 + 200j, 210 + 300j)
c = CubicBezier(60 + 150j, 40 + 200j, 120 + 250j, 200 + 160j)
d = Arc(70 + 150j, 50 + 100j, 0, 0, 0, 200 + 100j)
segdict = {'line': a, "quadratic": b, 'cubic': c, 'arc': d}
# test each segment type against each other type
for x, y in [(x, y) for x in segdict for y in segdict]:
if x == y:
continue
x = segdict[x]
y = segdict[y]
xiy = sorted(x.intersect(y, tol=1e-15))
yix = sorted(y.intersect(x, tol=1e-15), key=itemgetter(1))
for xy, yx in zip(xiy, yix):
self.assertAlmostEqual(xy[0], yx[1], delta=TOL)
self.assertAlmostEqual(xy[1], yx[0], delta=TOL)
self.assertAlmostEqual(x.point(xy[0]), y.point(yx[0]), delta=TOL)
self.assertTrue(len(xiy) == len(yix))
# test each segment against another segment of same type
for x in segdict:
if x == 'arc':
# this is an example of the Arc.intersect method not working
# in call cases. See docstring for a note on its
# incomplete implementation.
continue
x = segdict[x]
y = x.rotated(90).translated(5)
xiy = sorted(x.intersect(y, tol=1e-15))
yix = sorted(y.intersect(x, tol=1e-15), key=itemgetter(1))
for xy, yx in zip(xiy, yix):
self.assertAlmostEqual(xy[0], yx[1], delta=TOL)
self.assertAlmostEqual(xy[1], yx[0], delta=TOL)
self.assertAlmostEqual(x.point(xy[0]), y.point(yx[0]), delta=TOL)
self.assertTrue(len(xiy) == len(yix))
self.assertTrue(len(xiy) == 1)
self.assertTrue(len(yix) == 1)
###################################################################
def test_random_intersections(self):
from random import Random
r = Random()
distance = 100
distribution = 10000
count = 500
def random_complex(offset_x=0.0, offset_y=0.0):
return complex(r.random() * distance + offset_x, r.random() * distance + offset_y)
def random_line():
offset_x = r.random() * distribution
offset_y = r.random() * distribution
return Line(random_complex(offset_x, offset_y), random_complex(offset_x, offset_y))
def random_quad():
offset_x = r.random() * distribution
offset_y = r.random() * distribution
return QuadraticBezier(random_complex(offset_x, offset_y), random_complex(offset_x, offset_y), random_complex(offset_x, offset_y))
def random_cubic():
offset_x = r.random() * distribution
offset_y = r.random() * distribution
return CubicBezier(random_complex(offset_x, offset_y), random_complex(offset_x, offset_y), random_complex(offset_x, offset_y), random_complex(offset_x, offset_y))
def random_path():
path = Path()
for i in range(count):
type_segment = random.randint(0, 3)
if type_segment == 0:
path.append(random_line())
if type_segment == 1:
path.append(random_quad())
if type_segment == 2:
path.append(random_cubic())
return path
path1 = random_path()
path2 = random_path()
t = time.time()
intersections = path1.intersect(path2)
print("\nFound {} intersections in {} seconds.\n"
"".format(len(intersections), time.time() - t))
def test_line_line_0(self):
l0 = Line(start=(25.389999999999997+99.989999999999995j),
end=(25.389999999999997+90.484999999999999j))
l1 = Line(start=(25.390000000000001+84.114999999999995j),
end=(25.389999999999997+74.604202137430320j))
i = l0.intersect(l1)
assert(len(i)) == 0
def test_line_line_1(self):
l0 = Line(start=(-124.705378549+327.696674827j),
end=(12.4926214511+121.261674827j))
l1 = Line(start=(-12.4926214511+121.261674827j),
end=(124.705378549+327.696674827j))
i = l0.intersect(l1)
assert(len(i)) == 1
assert(abs(l0.point(i[0][0])-l1.point(i[0][1])) < 1e-9)
def test_arc_line(self):
l = Line(start=(-20+1j), end=(20+1j))
a = Arc(start=(-10+0), radius=(10+10j), rotation=0.0, large_arc=True, sweep=False, end=(10+0j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 2)
l = Line(start=(-20-1j), end=(20-1j))
a = Arc(start=(-10+0), radius=(10+10j), rotation=0.0, large_arc=True, sweep=False, end=(10+0j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 0)
l = Line(start=(-20+1j), end=(20+1j))
a = Arc(start=(-10+0), radius=(10+10j), rotation=0.0, large_arc=True, sweep=True, end=(10+0j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 0)
l = Line(start=(-20-1j), end=(20-1j))
a = Arc(start=(-10+0), radius=(10+10j), rotation=0.0, large_arc=True, sweep=True, end=(10+0j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 2)
l = Line(start=(-20+0j), end=(20+0j))
a = Arc(start=(-10+0), radius=(10+10j), rotation=0.0, large_arc=True, sweep=True, end=(10+0j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 2)
l = Line(start=(-20+0j), end=(20+0j))
a = Arc(start=(-10+0), radius=(10+10j), rotation=0.0, large_arc=True, sweep=False, end=(10+0j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 2)
l = Line(start=(-20+10j), end=(20+10j))
a = Arc(start=(-10+0), radius=(10+10j), rotation=0.0, large_arc=True, sweep=False, end=(10+0j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 1)
l = Line(start=(229.226097475-282.403591377j), end=(751.681212592+188.907748894j))
a = Arc(start=(-1-750j), radius=(750+750j), rotation=0.0, large_arc=True, sweep=False, end=(1-750j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 1)
# end of arc touches start of horizontal line
l = Line(start=(40.234-32.613j), end=(12.7-32.613j))
a = Arc(start=(100.834+27.987j), radius=(60.6+60.6j), rotation=0.0, large_arc=False, sweep=False, end=(40.234-32.613j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 1)
# vertical line, intersects half-arc once
l = Line(start=(1-100j), end=(1+100j))
a = Arc(start=(10.0+0j), radius=(10+10j), rotation=0, large_arc=False, sweep=True, end=(-10.0+0j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 1)
# vertical line, intersects nearly-full arc twice
l = Line(start=(1-100j), end=(1+100j))
a = Arc(start=(0.1-10j), radius=(10+10j), rotation=0, large_arc=True, sweep=True, end=(-0.1-10j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 2)
# vertical line, start of line touches end of arc
l = Line(start=(15.4+100j), end=(15.4+90.475j))
a = Arc(start=(25.4+90j), radius=(10+10j), rotation=0, large_arc=False, sweep=True, end=(15.4+100j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 1)
l = Line(start=(100-60.913j), end=(40+59j))
a = Arc(start=(100.834+27.987j), radius=(60.6+60.6j), rotation=0.0, large_arc=False, sweep=False, end=(40.234-32.613j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 1)
l = Line(start=(128.57143 + 380.93364j), end=(300.00001 + 389.505069j))
a = Arc(start=(214.28572 + 598.07649j), radius=(85.714287 + 108.57143j), rotation=0.0, large_arc=False, sweep=True, end=(128.57143 + 489.50507j))
intersections = a.intersect(l)
assert_intersections(self, a, l, intersections, 0)
random.seed()
for arc_index in range(50):
a = random_arc()
for line_index in range(100):
l = random_line()
intersections = a.intersect(l)
msg = 'Generated: arc = {}, line = {}'.format(a, l)
assert_intersections(self, a, l, intersections, None, msg=msg)
def test_intersect_arc_line_1(self):
"""Verify the return value of intersects() when an Arc ends at
the starting point of a Line."""
a = Arc(start=(0+0j), radius=(10+10j), rotation=0, large_arc=False,
sweep=False, end=(10+10j), autoscale_radius=False)
l = Line(start=(10+10j), end=(20+10j))
i = a.intersect(l)
self.assertEqual(len(i), 1)
self.assertEqual(i[0][0], 1.0)
self.assertEqual(i[0][1], 0.0)
def test_intersect_arc_line_2(self):
"""Verify the return value of intersects() when an Arc is pierced
once by a Line."""
a = Arc(start=(0+0j), radius=(10+10j), rotation=0, large_arc=False,
sweep=False, end=(10+10j), autoscale_radius=False)
l = Line(start=(0+9j), end=(20+9j))
i = a.intersect(l)
self.assertEqual(len(i), 1)
self.assertGreaterEqual(i[0][0], 0.0)
self.assertLessEqual(i[0][0], 1.0)
self.assertGreaterEqual(i[0][1], 0.0)
self.assertLessEqual(i[0][1], 1.0)
def test_intersect_arc_line_3(self):
"""Verify the return value of intersects() when an Arc misses
a Line, but the circle that the Arc is part of hits the Line."""
a = Arc(start=(0+0j), radius=(10+10j), rotation=0, large_arc=False,
sweep=False, end=(10+10j), autoscale_radius=False)
l = Line(start=(11+100j), end=(11-100j))
i = a.intersect(l)
self.assertEqual(len(i), 0)
def test_intersect_arc_line_disjoint_bboxes(self):
# The arc is very short, which contributes to the problem here.
l = Line(start=(125.314540561+144.192926144j), end=(125.798713132+144.510685287j))
a = Arc(start=(128.26640649+146.908463323j), radius=(2+2j),
rotation=0, large_arc=False, sweep=True,
end=(128.26640606+146.90846449j))
i = l.intersect(a)
self.assertEqual(i, [])
def test_arc_arc_0(self):
# These arcs cross at a single point.
a0 = Arc(start=(114.648+27.4280898219j), radius=(22+22j), rotation=0, large_arc=False, sweep=True, end=(118.542+39.925j))
a1 = Arc(start=(118.542+15.795j), radius=(22+22j), rotation=0, large_arc=False, sweep=True, end=(96.542+37.795j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 1)
def test_arc_arc_1(self):
# These touch at an endpoint, and are *nearly* segments of a larger arc.
a0 = Arc(start=(-12.8272110776+72.6464538932j), radius=(44.029+44.029j), rotation=0.0, large_arc=False, sweep=False, end=(-60.6807543328+75.3104334473j))
a1 = Arc(start=(-60.6807101078+75.3104011248j), radius=(44.029+44.029j), rotation=0.0, large_arc=False, sweep=False, end=(-77.7490636234+120.096609353j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 1)
def test_arc_arc_2(self):
# These arcs cross at a single point.
a0 = Arc(start=(112.648+5j), radius=(24+24j), rotation=0, large_arc=False, sweep=True, end=(136.648+29j))
a1 = Arc(start=(112.648+6.33538520071j), radius=(24+24j), rotation=0, large_arc=False, sweep=True, end=(120.542+5j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 1)
# The Arcs in this test are part of the same circle.
def test_arc_arc_same_circle(self):
# These touch at one endpoint, and go in the same direction.
a0 = Arc(start=(0+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(-10+10j))
a1 = Arc(start=(-10+10j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(0+20j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 1)
# These touch at both endpoints, and go in the same direction.
a0 = Arc(start=(0+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(-10+10j))
a1 = Arc(start=(-10+10j), radius=(10+10j), rotation=0.0, large_arc=True, sweep=False, end=(0+0j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 2)
# These touch at one endpoint, and go in opposite directions.
a0 = Arc(start=(0+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(0+20j))
a1 = Arc(start=(0+20j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=True, end=(-10+10j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 0)
# These touch at both endpoints, and go in opposite directions.
a0 = Arc(start=(0+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(-10+10j))
a1 = Arc(start=(-10+10j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=True, end=(0+0j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 0)
# These are totally disjoint.
a0 = Arc(start=(0+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(-10+10j))
a1 = Arc(start=(0+20j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(10+10j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 0)
# These overlap at one end and don't touch at the other.
a0 = Arc(start=(0+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(0+20j))
a1 = Arc(start=(-10+10j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(10+10j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 0)
# These overlap at one end and touch at the other.
a0 = Arc(start=(0+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(0+20j))
a1 = Arc(start=(-10+10j), radius=(10+10j), rotation=0.0, large_arc=True, sweep=False, end=(0+0j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 0)
# The Arcs in this test are part of tangent circles, outside each other.
def test_arc_arc_tangent_circles_outside(self):
a0 = Arc(start=(0+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(0+20j))
a1 = Arc(start=(-20+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=True, end=(-20+20j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 1)
a0 = Arc(start=(0+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(0+20j))
a1 = Arc(start=(-20+0j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(-20+20j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 0)
a0 = Arc(start=(10-10j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(10+10j))
a1 = Arc(start=(-10-0j), radius=(5+5j), rotation=0.0, large_arc=True, sweep=True, end=(-5+5j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 1)
# The Arcs in this test are part of tangent circles, one inside the other.
def test_arc_arc_tangent_circles_inside(self):
a0 = Arc(start=(10-10j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(10+10j))
a1 = Arc(start=(10-0j), radius=(5+5j), rotation=0.0, large_arc=True, sweep=True, end=(5+5j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 1)
a0 = Arc(start=(10-10j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(10+10j))
a1 = Arc(start=(10-0j), radius=(5+5j), rotation=0.0, large_arc=True, sweep=False, end=(5+5j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 1)
a0 = Arc(start=(10-10j), radius=(10+10j), rotation=0.0, large_arc=False, sweep=False, end=(10+10j))
a1 = Arc(start=(10-0j), radius=(5+5j), rotation=0.0, large_arc=False, sweep=False, end=(5+5j))
intersections = a0.intersect(a1)
assert_intersections(self, a0, a1, intersections, 0)
class TestPathTools(unittest.TestCase):
# moved from test_pathtools.py
def setUp(self):
self.arc1 = Arc(650+325j, 25+25j, -30.0, False, True, 700+300j)
self.line1 = Line(0, 100+100j)
self.quadratic1 = QuadraticBezier(100+100j, 150+150j, 300+200j)
self.cubic1 = CubicBezier(300+200j, 350+400j, 400+425j, 650+325j)
self.path_of_all_seg_types = Path(self.line1, self.quadratic1,
self.cubic1, self.arc1)
self.path_of_bezier_seg_types = Path(self.line1, self.quadratic1,
self.cubic1)
def test_is_bezier_segment(self):
# False
self.assertFalse(is_bezier_segment(self.arc1))
self.assertFalse(is_bezier_segment(self.path_of_bezier_seg_types))
# True
self.assertTrue(is_bezier_segment(self.line1))
self.assertTrue(is_bezier_segment(self.quadratic1))
self.assertTrue(is_bezier_segment(self.cubic1))
def test_is_bezier_path(self):
# False
self.assertFalse(is_bezier_path(self.path_of_all_seg_types))
self.assertFalse(is_bezier_path(self.line1))
self.assertFalse(is_bezier_path(self.quadratic1))
self.assertFalse(is_bezier_path(self.cubic1))
self.assertFalse(is_bezier_path(self.arc1))
# True
self.assertTrue(is_bezier_path(self.path_of_bezier_seg_types))
self.assertTrue(is_bezier_path(Path()))
def test_polynomial2bezier(self):
def distfcn(tup1, tup2):
assert len(tup1) == len(tup2)
return sum((tup1[i]-tup2[i])**2 for i in range(len(tup1)))**0.5
# Case: Line
pcoeffs = [(-1.7-2j), (6+2j)]
p = np.poly1d(pcoeffs)
correct_bpoints = [(6+2j), (4.3+0j)]
# Input np.poly1d object
bez = poly2bez(p)
bpoints = bez.bpoints()
self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0, delta=TOL)
# Input list of coefficients
bpoints = poly2bez(pcoeffs, return_bpoints=True)
self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0, delta=TOL)
# Case: Quadratic
pcoeffs = [(29.5+15.5j), (-31-19j), (7.5+5.5j)]
p = np.poly1d(pcoeffs)
correct_bpoints = [(7.5+5.5j), (-8-4j), (6+2j)]
# Input np.poly1d object
bez = poly2bez(p)
bpoints = bez.bpoints()
self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0, delta=TOL)
# Input list of coefficients
bpoints = poly2bez(pcoeffs, return_bpoints=True)
self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0, delta=TOL)
# Case: Cubic
pcoeffs = [(-18.5-12.5j), (34.5+16.5j), (-18-6j), (6+2j)]
p = np.poly1d(pcoeffs)
correct_bpoints = [(6+2j), 0j, (5.5+3.5j), (4+0j)]
# Input np.poly1d object
bez = poly2bez(p)
bpoints = bez.bpoints()
self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0, delta=TOL)
# Input list of coefficients object
bpoints = poly2bez(pcoeffs, return_bpoints=True)
self.assertAlmostEqual(distfcn(bpoints, correct_bpoints), 0, delta=TOL)
def test_bpoints2bezier(self):
cubic_bpoints = [(6+2j), 0, (5.5+3.5j), (4+0j)]
quadratic_bpoints = [(6+2j), 0, (5.5+3.5j)]
line_bpoints = [(6+2j), 0]
self.assertTrue(isinstance(bpoints2bezier(cubic_bpoints), CubicBezier))
self.assertTrue(isinstance(bpoints2bezier(quadratic_bpoints),
QuadraticBezier))
self.assertTrue(isinstance(bpoints2bezier(line_bpoints), Line))
self.assertSequenceEqual(bpoints2bezier(cubic_bpoints).bpoints(),
cubic_bpoints)
self.assertSequenceEqual(bpoints2bezier(quadratic_bpoints).bpoints(),
quadratic_bpoints)
self.assertSequenceEqual(bpoints2bezier(line_bpoints).bpoints(),
line_bpoints)
# def test_line2pathd(self):
# bpoints = (0+1.5j, 100+10j)
# line = Line(*bpoints)
#
# # from Line object
# pathd = line2pathd(line)
# path = parse_path(pathd)
# self.assertTrue(path[0] == line)
#
# # from list of bpoints
# pathd = line2pathd(bpoints)
# path = parse_path(pathd)
# self.assertTrue(path[0] == line)
#
# def test_cubic2pathd(self):
# bpoints = (0+1.5j, 100+10j, 150-155.3j, 0)
# cubic = CubicBezier(*bpoints)
#
# # from Line object
# pathd = cubic2pathd(cubic)
# path = parse_path(pathd)
# self.assertTrue(path[0] == cubic)
#
# # from list of bpoints
# pathd = cubic2pathd(bpoints)
# path = parse_path(pathd)
# self.assertTrue(path[0] == cubic)
def test_closest_point_in_path(self):
def distfcn(tup1, tup2):
assert len(tup1) == len(tup2)
return sum((tup1[i]-tup2[i])**2 for i in range(len(tup1)))**0.5
# Note: currently the radiialrange method is not implemented for Arc
# objects
# test_path = self.path_of_all_seg_types
# origin = -123 - 123j
# expected_result = ???
# self.assertAlmostEqual(min_radius(origin, test_path),
# expected_result)
# generic case (where is_bezier_path(test_path) == True)
test_path = self.path_of_bezier_seg_types
pt = 300+300j
expected_result = (29.382522853493143, 0.17477067969145446, 2)
result = closest_point_in_path(pt, test_path)
err = distfcn(expected_result, result)
self.assertAlmostEqual(err, 0, delta=TOL)
# cubic test with multiple valid solutions
test_path = Path(CubicBezier(1-2j, 10-1j, 10+1j, 1+2j))
pt = 3
expected_results = [(1.7191878932122302, 0.90731678233211366, 0),
(1.7191878932122304, 0.092683217667886342, 0)]
result = closest_point_in_path(pt, test_path)
err = min(distfcn(e_res, result) for e_res in expected_results)
self.assertAlmostEqual(err, 0, delta=TOL)
def test_farthest_point_in_path(self):
def distfcn(tup1, tup2):
assert len(tup1) == len(tup2)
return sum((tup1[i]-tup2[i])**2 for i in range(len(tup1)))**0.5
# Note: currently the radiialrange method is not implemented for Arc
# objects
# test_path = self.path_of_all_seg_types
# origin = -123 - 123j
# expected_result = ???
# self.assertAlmostEqual(min_radius(origin, test_path),
# expected_result)
# boundary test
test_path = self.path_of_bezier_seg_types
pt = 300+300j
expected_result = (424.26406871192853, 0, 0)
result = farthest_point_in_path(pt, test_path)
err = distfcn(expected_result, result)
self.assertAlmostEqual(err, 0, delta=TOL)
# non-boundary test
test_path = Path(CubicBezier(1-2j, 10-1j, 10+1j, 1+2j))
pt = 3
expected_result = (4.75, 0.5, 0)
result = farthest_point_in_path(pt, test_path)
err = distfcn(expected_result, result)
self.assertAlmostEqual(err, 0, delta=TOL)
def test_path_encloses_pt(self):
line1 = Line(0, 100+100j)
quadratic1 = QuadraticBezier(100+100j, 150+150j, 300+200j)
cubic1 = CubicBezier(300+200j, 350+400j, 400+425j, 650+325j)
line2 = Line(650+325j, 650+10j)
line3 = Line(650+10j, 0)
open_bez_path = Path(line1, quadratic1, cubic1)
closed_bez_path = Path(line1, quadratic1, cubic1, line2, line3)
inside_pt = 200+20j
outside_pt1 = 1000+1000j
outside_pt2 = 800+800j
boundary_pt = 50+50j
# Note: currently the intersect() method is not implemented for Arc
# objects
# arc1 = Arc(650+325j, 25+25j, -30.0, False, True, 700+300j)
# closed_path_with_arc = Path(line1, quadratic1, cubic1, arc1)
# self.assertTrue(
# path_encloses_pt(inside_pt, outside_pt2, closed_path_with_arc))
# True cases
self.assertTrue(
path_encloses_pt(inside_pt, outside_pt2, closed_bez_path))
self.assertTrue(
path_encloses_pt(boundary_pt, outside_pt2, closed_bez_path))
# False cases
self.assertFalse(
path_encloses_pt(outside_pt1, outside_pt2, closed_bez_path))
# Exception Cases
with self.assertRaises(AssertionError):
path_encloses_pt(inside_pt, outside_pt2, open_bez_path)
# Display test paths and points
# ns2d = [inside_pt, outside_pt1, outside_pt2, boundary_pt]
# ncolors = ['green', 'red', 'orange', 'purple']
# disvg(closed_path_with_arc, nodes=ns2d, node_colors=ncolors,
# openinbrowser=True)
# disvg(open_bez_path, nodes=ns2d, node_colors=ncolors,
# openinbrowser=True)
# disvg(closed_bez_path, nodes=ns2d, node_colors=ncolors,
# openinbrowser=True)
def test_path_area(self):
if not RUN_SLOW_TESTS:
warnings.warn("Skipping `test_path_area` as RUN_SLOW_TESTS is false.")
return
cw_square = Path()
cw_square.append(Line((0+0j), (0+100j)))
cw_square.append(Line((0+100j), (100+100j)))
cw_square.append(Line((100+100j), (100+0j)))
cw_square.append(Line((100+0j), (0+0j)))
self.assertEqual(cw_square.area(), -10000.0)
ccw_square = Path()
ccw_square.append(Line((0+0j), (100+0j)))
ccw_square.append(Line((100+0j), (100+100j)))
ccw_square.append(Line((100+100j), (0+100j)))
ccw_square.append(Line((0+100j), (0+0j)))
self.assertEqual(ccw_square.area(), 10000.0)
cw_half_circle = Path()
cw_half_circle.append(Line((0+0j), (0+100j)))
cw_half_circle.append(Arc(start=(0+100j), radius=(50+50j), rotation=0, large_arc=False, sweep=False, end=(0+0j)))
self.assertAlmostEqual(cw_half_circle.area(), -3926.9908169872415, places=3)
self.assertAlmostEqual(cw_half_circle.area(chord_length=1e-3), -3926.9908169872415, places=6)
ccw_half_circle = Path()
ccw_half_circle.append(Line((0+100j), (0+0j)))
ccw_half_circle.append(Arc(start=(0+0j), radius=(50+50j), rotation=0, large_arc=False, sweep=True, end=(0+100j)))
self.assertAlmostEqual(ccw_half_circle.area(), 3926.9908169872415, places=3)
self.assertAlmostEqual(ccw_half_circle.area(chord_length=1e-3), 3926.9908169872415, places=6)
def test_is_contained_by(self):
enclosing_shape = Path()
enclosing_shape.append(Line((0+0j), (0+100j)))
enclosing_shape.append(Line((0+100j), (100+100j)))
enclosing_shape.append(Line((100+100j), (100+0j)))
enclosing_shape.append(Line((100+0j), (0+0j)))
enclosed_path = Path()
enclosed_path.append(Line((10+10j), (90+90j)))
self.assertTrue(enclosed_path.is_contained_by(enclosing_shape))
not_enclosed_path = Path()
not_enclosed_path.append(Line((200+200j), (200+0j)))
self.assertFalse(not_enclosed_path.is_contained_by(enclosing_shape))
intersecting_path = Path()
intersecting_path.append(Line((50+50j), (200+50j)))
self.assertFalse(intersecting_path.is_contained_by(enclosing_shape))
larger_shape = Path()
larger_shape.append(Line((-10-10j), (-10+110j)))
larger_shape.append(Line((-10+110j), (110+110j)))
larger_shape.append(Line((110+110j), (110+-10j)))
larger_shape.append(Line((110-10j), (-10-10j)))
self.assertFalse(larger_shape.is_contained_by(enclosing_shape))
self.assertTrue(enclosing_shape.is_contained_by(larger_shape))
class TestPathBugs(unittest.TestCase):
def test_issue_113(self):
"""
Tests against issue regebro/svg.path#61 mathandy/svgpathtools#113
"""
p = Path('M 206.5,525 Q 162.5,583 162.5,583')
self.assertAlmostEqual(p.length(), 72.80109889280519, delta=TOL)
p = Path('M 425.781 446.289 Q 410.40000000000003 373.047 410.4 373.047')
self.assertAlmostEqual(p.length(), 74.83959997888816, delta=TOL)
p = Path('M 639.648 568.115 Q 606.6890000000001 507.568 606.689 507.568')
self.assertAlmostEqual(p.length(), 68.93645544992873, delta=TOL)
p = Path('M 288.818 616.699 Q 301.025 547.3629999999999 301.025 547.363')
self.assertAlmostEqual(p.length(), 70.40235610403947, delta=TOL)
p = Path('M 339.927 706.25 Q 243.92700000000002 806.25 243.927 806.25')
self.assertAlmostEqual(p.length(), 138.6217876093077, delta=TOL)
p = Path('M 539.795 702.637 Q 548.0959999999999 803.4669999999999 548.096 803.467')
self.assertAlmostEqual(p.length(), 101.17111989594662, delta=TOL)
p = Path('M 537.815 555.042 Q 570.1680000000001 499.1600000000001 570.168 499.16')
self.assertAlmostEqual(p.length(), 64.57177814649368, delta=TOL)
p = Path('M 615.297 470.503 Q 538.797 694.5029999999999 538.797 694.503')
self.assertAlmostEqual(p.length(), 236.70287281737836, delta=TOL)
def test_issue_71(self):
p = Path("M327 468z")
m = p.closed
q = p.d() # Failing to Crash is good.
def test_issue_95(self):
"""
Corrects:
https://github.com/mathandy/svgpathtools/issues/95
"""
p = Path('M261 166 L261 166')
self.assertEqual(p.length(), 0)
def test_issue_94(self):
# clipping rectangle
p1 = Path('M0.0 0.0 L27.84765625 0.0 L27.84765625 242.6669922 L0.0 242.6669922 z')
# clipping rectangle
p2 = Path('M166.8359375,235.5478516c0,3.7773438-3.0859375,6.8691406-6.8701172,6.8691406H7.1108398c-3.7749023,0-6.8608398-3.0917969-6.8608398-6.8691406V7.1201172C0.25,3.3427734,3.3359375,0.25,7.1108398,0.25h152.8549805c3.7841797,0,6.8701172,3.0927734,6.8701172,6.8701172v228.4277344z')
self.assertEqual(len(p1.intersect(p2)), len(p2.intersect(p1)))
if __name__ == '__main__':
unittest.main()