197 lines
5.8 KiB
C
197 lines
5.8 KiB
C
/*-----------------------------------------------------------------------------
|
|
* Some sample code for slvs.dll. We draw some geometric entities, provide
|
|
* initial guesses for their positions, and then constrain them. The solver
|
|
* calculates their new positions, in order to satisfy the constraints.
|
|
*
|
|
* Copyright -2008-2013 Jonathan Westhues.
|
|
*---------------------------------------------------------------------------*/
|
|
#ifdef WIN32
|
|
#include <windows.h>
|
|
#endif
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <math.h>
|
|
#include "slvs.h"
|
|
|
|
static Slvs_System sys;
|
|
|
|
static void *CheckMalloc(size_t n)
|
|
{
|
|
void *r = malloc(n);
|
|
if (!r)
|
|
{
|
|
printf("out of memory!\n");
|
|
exit(-1);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* An example of a constraint in 3d. We create a single group, with some
|
|
* entities and constraints.
|
|
*---------------------------------------------------------------------------*/
|
|
|
|
int solver(int nPts, float *p_ptr, int nConst, float *c_ptr, int nLinks, float *l_ptr, int geomStartIdx)
|
|
{
|
|
// printf("first %i \n", (int)*(l_ptr + 1));
|
|
Slvs_hGroup g;
|
|
double qw, qx, qy, qz;
|
|
|
|
g = 1;
|
|
/* First, we create our workplane. Its origin corresponds to the origin
|
|
* of our base frame (x y z) = (0 0 0) */
|
|
sys.param[sys.params++] = Slvs_MakeParam(1, g, 0.0);
|
|
sys.param[sys.params++] = Slvs_MakeParam(2, g, 1.0);
|
|
sys.param[sys.params++] = Slvs_MakeParam(3, g, -1.0);
|
|
sys.entity[sys.entities++] = Slvs_MakePoint3d(-101, g, 1, 1, 1);
|
|
/* and it is parallel to the xy plane, so it has basis vectors (1 0 0)
|
|
* and (0 1 0). */
|
|
Slvs_MakeQuaternion(1, 0, 0,
|
|
0, 1, 0, &qw, &qx, &qy, &qz);
|
|
sys.param[sys.params++] = Slvs_MakeParam(4, g, qw);
|
|
sys.param[sys.params++] = Slvs_MakeParam(5, g, qx);
|
|
sys.param[sys.params++] = Slvs_MakeParam(6, g, qy);
|
|
sys.param[sys.params++] = Slvs_MakeParam(7, g, qz);
|
|
sys.entity[sys.entities++] = Slvs_MakeNormal3d(-102, g, 4, 5, 6, 7);
|
|
|
|
sys.entity[sys.entities++] = Slvs_MakeWorkplane(-200, g, -101, -102);
|
|
|
|
/* Now create a second group. We'll solve group 2, while leaving group 1
|
|
* constant; so the workplane that we've created will be locked down,
|
|
* and the solver can't move it. */
|
|
g = 2;
|
|
/* These points are represented by their coordinates (u v) within the
|
|
* workplane, so they need only two parameters each. */
|
|
|
|
sys.entity[sys.entities++] = Slvs_MakePoint2d(-103, g, -200, 1, 1);
|
|
sys.entity[sys.entities++] = Slvs_MakePoint2d(-104, g, -200, 1, 3);
|
|
sys.entity[sys.entities++] = Slvs_MakePoint2d(-105, g, -200, 3, 1);
|
|
sys.entity[sys.entities++] = Slvs_MakeLineSegment(-106, g,
|
|
-200, -103, -104); //y-axis
|
|
sys.entity[sys.entities++] = Slvs_MakeLineSegment(-107, g,
|
|
-200, -103, -105); //x-axis
|
|
|
|
Slvs_hParam ph = 11;
|
|
|
|
float *buf_pt_start = p_ptr;
|
|
int p_start = sys.params;
|
|
for (int i = 0; i < nPts; i++)
|
|
{
|
|
if (isnan((float)*p_ptr))
|
|
{
|
|
p_ptr += 3;
|
|
continue;
|
|
}
|
|
|
|
sys.param[sys.params++] = Slvs_MakeParam(ph++, g, (float)*p_ptr++);
|
|
sys.param[sys.params++] = Slvs_MakeParam(ph++, g, (float)*p_ptr++);
|
|
sys.entity[sys.entities++] = Slvs_MakePoint2d(i, g, -200, ph - 1, ph - 2);
|
|
p_ptr += 1;
|
|
}
|
|
|
|
for (int i = 0; i < nLinks; i++)
|
|
{
|
|
|
|
switch ((int)*l_ptr++)
|
|
{
|
|
case 0:
|
|
sys.entity[sys.entities++] = Slvs_MakeLineSegment((int)*(l_ptr + 2), g,
|
|
-200, (int)*l_ptr, (int)*(l_ptr + 1));
|
|
break;
|
|
case 1:
|
|
sys.entity[sys.entities++] = Slvs_MakeArcOfCircle((int)*(l_ptr + 3), g, -200, -102,
|
|
(int)*(l_ptr + 2), (int)*(l_ptr), (int)*(l_ptr + 1));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
l_ptr += 4;
|
|
}
|
|
|
|
int c_pre = 1;
|
|
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
|
|
c_pre++, 2,
|
|
SLVS_C_POINTS_COINCIDENT,
|
|
-200,
|
|
-1,
|
|
-101, geomStartIdx, -1, -1);
|
|
|
|
for (int c_id = c_pre; c_id < c_pre + nConst; c_id++, c_ptr += 8)
|
|
{
|
|
if ((int)*c_ptr >= 34)
|
|
{
|
|
sys.constraint[sys.constraints++] = Slvs_MakeConstraint_Alt(
|
|
c_id, g,
|
|
30 + 100000,
|
|
-200,
|
|
*(c_ptr + 1),
|
|
(int)*(c_ptr + 2), (int)*(c_ptr + 3), (int)*c_ptr == 34 ? -106: -107, (int)*(c_ptr + 5), (int)*(c_ptr + 6), (int)*(c_ptr + 7));
|
|
}
|
|
else
|
|
{
|
|
sys.constraint[sys.constraints++] = Slvs_MakeConstraint_Alt(
|
|
c_id, g,
|
|
(int)*c_ptr + 100000,
|
|
-200,
|
|
*(c_ptr + 1),
|
|
(int)*(c_ptr + 2), (int)*(c_ptr + 3), (int)*(c_ptr + 4), (int)*(c_ptr + 5), (int)*(c_ptr + 6), (int)*(c_ptr + 7));
|
|
}
|
|
}
|
|
|
|
/* And solve. */
|
|
Slvs_Solve(&sys, g);
|
|
|
|
if (sys.result == SLVS_RESULT_OKAY)
|
|
{
|
|
// printf("solved okay\n");
|
|
|
|
for (int i = 0; i < nPts; i++)
|
|
{
|
|
if (isnan((float)*buf_pt_start))
|
|
{
|
|
buf_pt_start += 3;
|
|
continue;
|
|
}
|
|
*buf_pt_start++ = (float)sys.param[p_start++].val;
|
|
*buf_pt_start++ = (float)sys.param[p_start++].val;
|
|
buf_pt_start += 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
printf("solve failed: problematic constraints are:");
|
|
for (i = 0; i < sys.faileds; i++)
|
|
{
|
|
printf(" %d", sys.failed[i]);
|
|
}
|
|
printf("\n");
|
|
if (sys.result == SLVS_RESULT_INCONSISTENT)
|
|
{
|
|
printf("system inconsistent\n");
|
|
}
|
|
else
|
|
{
|
|
printf("system nonconvergent\n");
|
|
}
|
|
}
|
|
sys.params = sys.constraints = sys.entities = 0;
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
sys.param = CheckMalloc(500 * sizeof(sys.param[0]));
|
|
sys.entity = CheckMalloc(500 * sizeof(sys.entity[0]));
|
|
sys.constraint = CheckMalloc(500 * sizeof(sys.constraint[0]));
|
|
|
|
sys.failed = CheckMalloc(500 * sizeof(sys.failed[0]));
|
|
sys.faileds = 500;
|
|
|
|
// printf("hello\n");
|
|
return 0;
|
|
}
|