tinyriscv/rtl/utils/sync_fifo.sv

139 lines
5.8 KiB
Systemverilog
Raw Normal View History

// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
// Author: Florian Zaruba <zarubaf@iis.ee.ethz.ch>
module sync_fifo #(
parameter bit FALL_THROUGH = 1'b0, // fifo is in fall-through mode
parameter int unsigned DATA_WIDTH = 32, // default data width if the fifo is of type logic
parameter int unsigned DEPTH = 8, // depth can be arbitrary from 0 to 2**32
parameter type dtype = logic [DATA_WIDTH-1:0],
// DO NOT OVERWRITE THIS PARAMETER
parameter int unsigned ADDR_DEPTH = (DEPTH > 1) ? $clog2(DEPTH) : 1
)(
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic flush_i, // flush the queue
input logic testmode_i, // test_mode to bypass clock gating
// status flags
output logic full_o, // queue is full
output logic empty_o, // queue is empty
output logic [ADDR_DEPTH-1:0] usage_o, // fill pointer
// as long as the queue is not full we can push new data
input dtype data_i, // data to push into the queue
input logic push_i, // data is valid and can be pushed to the queue
// as long as the queue is not empty we can pop new elements
output dtype data_o, // output data
input logic pop_i // pop head from queue
);
// local parameter
// FIFO depth - handle the case of pass-through, synthesizer will do constant propagation
localparam int unsigned FifoDepth = (DEPTH > 0) ? DEPTH : 1;
// clock gating control
logic gate_clock;
// pointer to the read and write section of the queue
logic [ADDR_DEPTH - 1:0] read_pointer_n, read_pointer_q, write_pointer_n, write_pointer_q;
// keep a counter to keep track of the current queue status
// this integer will be truncated by the synthesis tool
logic [ADDR_DEPTH:0] status_cnt_n, status_cnt_q;
// actual memory
dtype [FifoDepth - 1:0] mem_n, mem_q;
assign usage_o = status_cnt_q[ADDR_DEPTH-1:0];
if (DEPTH == 0) begin : gen_pass_through
assign empty_o = ~push_i;
assign full_o = ~pop_i;
end else begin : gen_fifo
assign full_o = (status_cnt_q == FifoDepth[ADDR_DEPTH:0]);
assign empty_o = (status_cnt_q == 0) & ~(FALL_THROUGH & push_i);
end
// status flags
// read and write queue logic
always_comb begin : read_write_comb
// default assignment
read_pointer_n = read_pointer_q;
write_pointer_n = write_pointer_q;
status_cnt_n = status_cnt_q;
data_o = (DEPTH == 0) ? data_i : mem_q[read_pointer_q];
mem_n = mem_q;
gate_clock = 1'b1;
// push a new element to the queue
if (push_i && ~full_o) begin
// push the data onto the queue
mem_n[write_pointer_q] = data_i;
// un-gate the clock, we want to write something
gate_clock = 1'b0;
// increment the write counter
if (write_pointer_q == FifoDepth[ADDR_DEPTH-1:0] - 1)
write_pointer_n = '0;
else
write_pointer_n = write_pointer_q + 1;
// increment the overall counter
status_cnt_n = status_cnt_q + 1;
end
if (pop_i && ~empty_o) begin
// read from the queue is a default assignment
// but increment the read pointer...
if (read_pointer_n == FifoDepth[ADDR_DEPTH-1:0] - 1)
read_pointer_n = '0;
else
read_pointer_n = read_pointer_q + 1;
// ... and decrement the overall count
status_cnt_n = status_cnt_q - 1;
end
// keep the count pointer stable if we push and pop at the same time
if (push_i && pop_i && ~full_o && ~empty_o)
status_cnt_n = status_cnt_q;
// FIFO is in pass through mode -> do not change the pointers
if (FALL_THROUGH && (status_cnt_q == 0) && push_i) begin
data_o = data_i;
if (pop_i) begin
status_cnt_n = status_cnt_q;
read_pointer_n = read_pointer_q;
write_pointer_n = write_pointer_q;
end
end
end
// sequential process
always_ff @(posedge clk_i or negedge rst_ni) begin
if(~rst_ni) begin
read_pointer_q <= '0;
write_pointer_q <= '0;
status_cnt_q <= '0;
end else begin
if (flush_i) begin
read_pointer_q <= '0;
write_pointer_q <= '0;
status_cnt_q <= '0;
end else begin
read_pointer_q <= read_pointer_n;
write_pointer_q <= write_pointer_n;
status_cnt_q <= status_cnt_n;
end
end
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if(~rst_ni) begin
mem_q <= '0;
end else if (!gate_clock) begin
mem_q <= mem_n;
end
end
endmodule