example: add coremark

Signed-off-by: liangkangnan <liangkangnan@163.com>
pull/1/head
liangkangnan 2020-04-11 22:30:09 +08:00
parent cf7862f50c
commit 0c79eef623
13 changed files with 9640 additions and 0 deletions

View File

@ -0,0 +1,18 @@
RISCV_ARCH := rv32im
RISCV_ABI := ilp32
TARGET := coremark
C_SRCS := \
core_list_join.c \
core_main.c \
core_matrix.c \
core_state.c \
core_util.c \
core_portme.c \
CFLAGS := -O2 -fno-common -funroll-loops -finline-functions --param max-inline-insns-auto=20 -falign-functions=4 -falign-jumps=4 -falign-loops=4
CFLAGS += -DFLAGS_STR=\""$(CFLAGS)"\"
CFLAGS += -DITERATIONS=10000 -DPERFORMANCE_RUN=1
include ../common.mk

View File

@ -0,0 +1 @@
由于coremark程序编译出来的bin文件将近30KB因此需要将link.lds文件里的flash加到到30KB或以上RAM加大到10KB或以上。

View File

@ -0,0 +1,496 @@
/*
Author : Shay Gal-On, EEMBC
This file is part of EEMBC(R) and CoreMark(TM), which are Copyright (C) 2009
All rights reserved.
EEMBC CoreMark Software is a product of EEMBC and is provided under the terms of the
CoreMark License that is distributed with the official EEMBC COREMARK Software release.
If you received this EEMBC CoreMark Software without the accompanying CoreMark License,
you must discontinue use and download the official release from www.coremark.org.
Also, if you are publicly displaying scores generated from the EEMBC CoreMark software,
make sure that you are in compliance with Run and Reporting rules specified in the accompanying readme.txt file.
EEMBC
4354 Town Center Blvd. Suite 114-200
El Dorado Hills, CA, 95762
*/
#include "coremark.h"
/*
Topic: Description
Benchmark using a linked list.
Linked list is a common data structure used in many applications.
For our purposes, this will excercise the memory units of the processor.
In particular, usage of the list pointers to find and alter data.
We are not using Malloc since some platforms do not support this library.
Instead, the memory block being passed in is used to create a list,
and the benchmark takes care not to add more items then can be
accomodated by the memory block. The porting layer will make sure
that we have a valid memory block.
All operations are done in place, without using any extra memory.
The list itself contains list pointers and pointers to data items.
Data items contain the following:
idx - An index that captures the initial order of the list.
data - Variable data initialized based on the input parameters. The 16b are divided as follows:
o Upper 8b are backup of original data.
o Bit 7 indicates if the lower 7 bits are to be used as is or calculated.
o Bits 0-2 indicate type of operation to perform to get a 7b value.
o Bits 3-6 provide input for the operation.
*/
/* local functions */
list_head *core_list_find(list_head *list,list_data *info);
list_head *core_list_reverse(list_head *list);
list_head *core_list_remove(list_head *item);
list_head *core_list_undo_remove(list_head *item_removed, list_head *item_modified);
list_head *core_list_insert_new(list_head *insert_point
, list_data *info, list_head **memblock, list_data **datablock
, list_head *memblock_end, list_data *datablock_end);
typedef ee_s32(*list_cmp)(list_data *a, list_data *b, core_results *res);
list_head *core_list_mergesort(list_head *list, list_cmp cmp, core_results *res);
ee_s16 calc_func(ee_s16 *pdata, core_results *res) {
ee_s16 data=*pdata;
ee_s16 retval;
ee_u8 optype=(data>>7) & 1; /* bit 7 indicates if the function result has been cached */
if (optype) /* if cached, use cache */
return (data & 0x007f);
else { /* otherwise calculate and cache the result */
ee_s16 flag=data & 0x7; /* bits 0-2 is type of function to perform */
ee_s16 dtype=((data>>3) & 0xf); /* bits 3-6 is specific data for the operation */
dtype |= dtype << 4; /* replicate the lower 4 bits to get an 8b value */
switch (flag) {
case 0:
if (dtype<0x22) /* set min period for bit corruption */
dtype=0x22;
retval=core_bench_state(res->size,res->memblock[3],res->seed1,res->seed2,dtype,res->crc);
if (res->crcstate==0)
res->crcstate=retval;
break;
case 1:
retval=core_bench_matrix(&(res->mat),dtype,res->crc);
if (res->crcmatrix==0)
res->crcmatrix=retval;
break;
default:
retval=data;
break;
}
res->crc=crcu16(retval,res->crc);
retval &= 0x007f;
*pdata = (data & 0xff00) | 0x0080 | retval; /* cache the result */
return retval;
}
}
/* Function: cmp_complex
Compare the data item in a list cell.
Can be used by mergesort.
*/
ee_s32 cmp_complex(list_data *a, list_data *b, core_results *res) {
ee_s16 val1=calc_func(&(a->data16),res);
ee_s16 val2=calc_func(&(b->data16),res);
return val1 - val2;
}
/* Function: cmp_idx
Compare the idx item in a list cell, and regen the data.
Can be used by mergesort.
*/
ee_s32 cmp_idx(list_data *a, list_data *b, core_results *res) {
if (res==NULL) {
a->data16 = (a->data16 & 0xff00) | (0x00ff & (a->data16>>8));
b->data16 = (b->data16 & 0xff00) | (0x00ff & (b->data16>>8));
}
return a->idx - b->idx;
}
void copy_info(list_data *to,list_data *from) {
to->data16=from->data16;
to->idx=from->idx;
}
/* Benchmark for linked list:
- Try to find multiple data items.
- List sort
- Operate on data from list (crc)
- Single remove/reinsert
* At the end of this function, the list is back to original state
*/
ee_u16 core_bench_list(core_results *res, ee_s16 finder_idx) {
ee_u16 retval=0;
ee_u16 found=0,missed=0;
list_head *list=res->list;
ee_s16 find_num=res->seed3;
list_head *this_find;
list_head *finder, *remover;
list_data info;
ee_s16 i;
info.idx=finder_idx;
/* find <find_num> values in the list, and change the list each time (reverse and cache if value found) */
for (i=0; i<find_num; i++) {
info.data16= (i & 0xff) ;
this_find=core_list_find(list,&info);
list=core_list_reverse(list);
if (this_find==NULL) {
missed++;
retval+=(list->next->info->data16 >> 8) & 1;
}
else {
found++;
if (this_find->info->data16 & 0x1) /* use found value */
retval+=(this_find->info->data16 >> 9) & 1;
/* and cache next item at the head of the list (if any) */
if (this_find->next != NULL) {
finder = this_find->next;
this_find->next = finder->next;
finder->next=list->next;
list->next=finder;
}
}
if (info.idx>=0)
info.idx++;
#if CORE_DEBUG
ee_printf("List find %d: [%d,%d,%d]\n",i,retval,missed,found);
#endif
}
retval+=found*4-missed;
/* sort the list by data content and remove one item*/
if (finder_idx>0)
list=core_list_mergesort(list,cmp_complex,res);
remover=core_list_remove(list->next);
/* CRC data content of list from location of index N forward, and then undo remove */
finder=core_list_find(list,&info);
if (!finder)
finder=list->next;
while (finder) {
retval=crc16(list->info->data16,retval);
finder=finder->next;
}
#if CORE_DEBUG
ee_printf("List sort 1: %04x\n",retval);
#endif
remover=core_list_undo_remove(remover,list->next);
/* sort the list by index, in effect returning the list to original state */
list=core_list_mergesort(list,cmp_idx,NULL);
/* CRC data content of list */
finder=list->next;
while (finder) {
retval=crc16(list->info->data16,retval);
finder=finder->next;
}
#if CORE_DEBUG
ee_printf("List sort 2: %04x\n",retval);
#endif
return retval;
}
/* Function: core_list_init
Initialize list with data.
Parameters:
blksize - Size of memory to be initialized.
memblock - Pointer to memory block.
seed - Actual values chosen depend on the seed parameter.
The seed parameter MUST be supplied from a source that cannot be determined at compile time
Returns:
Pointer to the head of the list.
*/
list_head *core_list_init(ee_u32 blksize, list_head *memblock, ee_s16 seed) {
/* calculated pointers for the list */
ee_u32 per_item=16+sizeof(struct list_data_s);
ee_u32 size=(blksize/per_item)-2; /* to accomodate systems with 64b pointers, and make sure same code is executed, set max list elements */
list_head *memblock_end=memblock+size;
list_data *datablock=(list_data *)(memblock_end);
list_data *datablock_end=datablock+size;
/* some useful variables */
ee_u32 i;
list_head *finder,*list=memblock;
list_data info;
/* create a fake items for the list head and tail */
list->next=NULL;
list->info=datablock;
list->info->idx=0x0000;
list->info->data16=(ee_s16)0x8080;
memblock++;
datablock++;
info.idx=0x7fff;
info.data16=(ee_s16)0xffff;
core_list_insert_new(list,&info,&memblock,&datablock,memblock_end,datablock_end);
/* then insert size items */
for (i=0; i<size; i++) {
ee_u16 datpat=((ee_u16)(seed^i) & 0xf);
ee_u16 dat=(datpat<<3) | (i&0x7); /* alternate between algorithms */
info.data16=(dat<<8) | dat; /* fill the data with actual data and upper bits with rebuild value */
core_list_insert_new(list,&info,&memblock,&datablock,memblock_end,datablock_end);
}
/* and now index the list so we know initial seed order of the list */
finder=list->next;
i=1;
while (finder->next!=NULL) {
if (i<size/5) /* first 20% of the list in order */
finder->info->idx=i++;
else {
ee_u16 pat=(ee_u16)(i++ ^ seed); /* get a pseudo random number */
finder->info->idx=0x3fff & (((i & 0x07) << 8) | pat); /* make sure the mixed items end up after the ones in sequence */
}
finder=finder->next;
}
list = core_list_mergesort(list,cmp_idx,NULL);
#if CORE_DEBUG
ee_printf("Initialized list:\n");
finder=list;
while (finder) {
ee_printf("[%04x,%04x]",finder->info->idx,(ee_u16)finder->info->data16);
finder=finder->next;
}
ee_printf("\n");
#endif
return list;
}
/* Function: core_list_insert
Insert an item to the list
Parameters:
insert_point - where to insert the item.
info - data for the cell.
memblock - pointer for the list header
datablock - pointer for the list data
memblock_end - end of region for list headers
datablock_end - end of region for list data
Returns:
Pointer to new item.
*/
list_head *core_list_insert_new(list_head *insert_point, list_data *info, list_head **memblock, list_data **datablock
, list_head *memblock_end, list_data *datablock_end) {
list_head *newitem;
if ((*memblock+1) >= memblock_end)
return NULL;
if ((*datablock+1) >= datablock_end)
return NULL;
newitem=*memblock;
(*memblock)++;
newitem->next=insert_point->next;
insert_point->next=newitem;
newitem->info=*datablock;
(*datablock)++;
copy_info(newitem->info,info);
return newitem;
}
/* Function: core_list_remove
Remove an item from the list.
Operation:
For a singly linked list, remove by copying the data from the next item
over to the current cell, and unlinking the next item.
Note:
since there is always a fake item at the end of the list, no need to check for NULL.
Returns:
Removed item.
*/
list_head *core_list_remove(list_head *item) {
list_data *tmp;
list_head *ret=item->next;
/* swap data pointers */
tmp=item->info;
item->info=ret->info;
ret->info=tmp;
/* and eliminate item */
item->next=item->next->next;
ret->next=NULL;
return ret;
}
/* Function: core_list_undo_remove
Undo a remove operation.
Operation:
Since we want each iteration of the benchmark to be exactly the same,
we need to be able to undo a remove.
Link the removed item back into the list, and switch the info items.
Parameters:
item_removed - Return value from the <core_list_remove>
item_modified - List item that was modified during <core_list_remove>
Returns:
The item that was linked back to the list.
*/
list_head *core_list_undo_remove(list_head *item_removed, list_head *item_modified) {
list_data *tmp;
/* swap data pointers */
tmp=item_removed->info;
item_removed->info=item_modified->info;
item_modified->info=tmp;
/* and insert item */
item_removed->next=item_modified->next;
item_modified->next=item_removed;
return item_removed;
}
/* Function: core_list_find
Find an item in the list
Operation:
Find an item by idx (if not 0) or specific data value
Parameters:
list - list head
info - idx or data to find
Returns:
Found item, or NULL if not found.
*/
list_head *core_list_find(list_head *list,list_data *info) {
if (info->idx>=0) {
while (list && (list->info->idx != info->idx))
list=list->next;
return list;
} else {
while (list && ((list->info->data16 & 0xff) != info->data16))
list=list->next;
return list;
}
}
/* Function: core_list_reverse
Reverse a list
Operation:
Rearrange the pointers so the list is reversed.
Parameters:
list - list head
info - idx or data to find
Returns:
Found item, or NULL if not found.
*/
list_head *core_list_reverse(list_head *list) {
list_head *next=NULL, *tmp;
while (list) {
tmp=list->next;
list->next=next;
next=list;
list=tmp;
}
return next;
}
/* Function: core_list_mergesort
Sort the list in place without recursion.
Description:
Use mergesort, as for linked list this is a realistic solution.
Also, since this is aimed at embedded, care was taken to use iterative rather then recursive algorithm.
The sort can either return the list to original order (by idx) ,
or use the data item to invoke other other algorithms and change the order of the list.
Parameters:
list - list to be sorted.
cmp - cmp function to use
Returns:
New head of the list.
Note:
We have a special header for the list that will always be first,
but the algorithm could theoretically modify where the list starts.
*/
list_head *core_list_mergesort(list_head *list, list_cmp cmp, core_results *res) {
list_head *p, *q, *e, *tail;
ee_s32 insize, nmerges, psize, qsize, i;
insize = 1;
while (1) {
p = list;
list = NULL;
tail = NULL;
nmerges = 0; /* count number of merges we do in this pass */
while (p) {
nmerges++; /* there exists a merge to be done */
/* step `insize' places along from p */
q = p;
psize = 0;
for (i = 0; i < insize; i++) {
psize++;
q = q->next;
if (!q) break;
}
/* if q hasn't fallen off end, we have two lists to merge */
qsize = insize;
/* now we have two lists; merge them */
while (psize > 0 || (qsize > 0 && q)) {
/* decide whether next element of merge comes from p or q */
if (psize == 0) {
/* p is empty; e must come from q. */
e = q; q = q->next; qsize--;
} else if (qsize == 0 || !q) {
/* q is empty; e must come from p. */
e = p; p = p->next; psize--;
} else if (cmp(p->info,q->info,res) <= 0) {
/* First element of p is lower (or same); e must come from p. */
e = p; p = p->next; psize--;
} else {
/* First element of q is lower; e must come from q. */
e = q; q = q->next; qsize--;
}
/* add the next element to the merged list */
if (tail) {
tail->next = e;
} else {
list = e;
}
tail = e;
}
/* now p has stepped `insize' places along, and q has too */
p = q;
}
tail->next = NULL;
/* If we have done only one merge, we're finished. */
if (nmerges <= 1) /* allow for nmerges==0, the empty list case */
return list;
/* Otherwise repeat, merging lists twice the size */
insize *= 2;
}
#if COMPILER_REQUIRES_SORT_RETURN
return list;
#endif
}

View File

@ -0,0 +1,356 @@
/*
Author : Shay Gal-On, EEMBC
This file is part of EEMBC(R) and CoreMark(TM), which are Copyright (C) 2009
All rights reserved.
EEMBC CoreMark Software is a product of EEMBC and is provided under the terms of the
CoreMark License that is distributed with the official EEMBC COREMARK Software release.
If you received this EEMBC CoreMark Software without the accompanying CoreMark License,
you must discontinue use and download the official release from www.coremark.org.
Also, if you are publicly displaying scores generated from the EEMBC CoreMark software,
make sure that you are in compliance with Run and Reporting rules specified in the accompanying readme.txt file.
EEMBC
4354 Town Center Blvd. Suite 114-200
El Dorado Hills, CA, 95762
*/
/* File: core_main.c
This file contains the framework to acquire a block of memory, seed initial parameters, tun t he benchmark and report the results.
*/
#include "coremark.h"
/* Function: iterate
Run the benchmark for a specified number of iterations.
Operation:
For each type of benchmarked algorithm:
a - Initialize the data block for the algorithm.
b - Execute the algorithm N times.
Returns:
NULL.
*/
static ee_u16 list_known_crc[] = {(ee_u16)0xd4b0,(ee_u16)0x3340,(ee_u16)0x6a79,(ee_u16)0xe714,(ee_u16)0xe3c1};
static ee_u16 matrix_known_crc[] = {(ee_u16)0xbe52,(ee_u16)0x1199,(ee_u16)0x5608,(ee_u16)0x1fd7,(ee_u16)0x0747};
static ee_u16 state_known_crc[] = {(ee_u16)0x5e47,(ee_u16)0x39bf,(ee_u16)0xe5a4,(ee_u16)0x8e3a,(ee_u16)0x8d84};
void *iterate(void *pres) {
ee_u32 i;
ee_u16 crc;
core_results *res=(core_results *)pres;
ee_u32 iterations=res->iterations;
res->crc=0;
res->crclist=0;
res->crcmatrix=0;
res->crcstate=0;
for (i=0; i<iterations; i++) {
crc=core_bench_list(res,1);
res->crc=crcu16(crc,res->crc);
crc=core_bench_list(res,-1);
res->crc=crcu16(crc,res->crc);
if (i==0) res->crclist=res->crc;
}
return NULL;
}
#if (SEED_METHOD==SEED_ARG)
ee_s32 get_seed_args(int i, int argc, char *argv[]);
#define get_seed(x) (ee_s16)get_seed_args(x,argc,argv)
#define get_seed_32(x) get_seed_args(x,argc,argv)
#else /* via function or volatile */
ee_s32 get_seed_32(int i);
#define get_seed(x) (ee_s16)get_seed_32(x)
#endif
#if (MEM_METHOD==MEM_STATIC)
ee_u8 static_memblk[TOTAL_DATA_SIZE];
#endif
char *mem_name[3] = {"Static","Heap","Stack"};
/* Function: main
Main entry routine for the benchmark.
This function is responsible for the following steps:
1 - Initialize input seeds from a source that cannot be determined at compile time.
2 - Initialize memory block for use.
3 - Run and time the benchmark.
4 - Report results, testing the validity of the output if the seeds are known.
Arguments:
1 - first seed : Any value
2 - second seed : Must be identical to first for iterations to be identical
3 - third seed : Any value, should be at least an order of magnitude less then the input size, but bigger then 32.
4 - Iterations : Special, if set to 0, iterations will be automatically determined such that the benchmark will run between 10 to 100 secs
*/
#if MAIN_HAS_NOARGC
MAIN_RETURN_TYPE main(void) {
int argc=0;
char *argv[1];
#else
MAIN_RETURN_TYPE main(int argc, char *argv[]) {
#endif
ee_u16 i,j=0,num_algorithms=0;
ee_s16 known_id=-1,total_errors=0;
ee_u16 seedcrc=0;
CORE_TICKS total_time;
core_results results[MULTITHREAD];
#if (MEM_METHOD==MEM_STACK)
ee_u8 stack_memblock[TOTAL_DATA_SIZE*MULTITHREAD];
#endif
/* first call any initializations needed */
portable_init(&(results[0].port), &argc, argv);
/* First some checks to make sure benchmark will run ok */
if (sizeof(struct list_head_s)>128) {
ee_printf("list_head structure too big for comparable data!\n");
return MAIN_RETURN_VAL;
}
results[0].seed1=get_seed(1);
results[0].seed2=get_seed(2);
results[0].seed3=get_seed(3);
results[0].iterations=get_seed_32(4);
#if CORE_DEBUG
results[0].iterations=1;
#endif
results[0].execs=get_seed_32(5);
if (results[0].execs==0) { /* if not supplied, execute all algorithms */
results[0].execs=ALL_ALGORITHMS_MASK;
}
/* put in some default values based on one seed only for easy testing */
if ((results[0].seed1==0) && (results[0].seed2==0) && (results[0].seed3==0)) { /* validation run */
results[0].seed1=0;
results[0].seed2=0;
results[0].seed3=0x66;
}
if ((results[0].seed1==1) && (results[0].seed2==0) && (results[0].seed3==0)) { /* perfromance run */
results[0].seed1=0x3415;
results[0].seed2=0x3415;
results[0].seed3=0x66;
}
#if (MEM_METHOD==MEM_STATIC)
results[0].memblock[0]=(void *)static_memblk;
results[0].size=TOTAL_DATA_SIZE;
results[0].err=0;
#if (MULTITHREAD>1)
#error "Cannot use a static data area with multiple contexts!"
#endif
#elif (MEM_METHOD==MEM_MALLOC)
for (i=0 ; i<MULTITHREAD; i++) {
ee_s32 malloc_override=get_seed(7);
if (malloc_override != 0)
results[i].size=malloc_override;
else
results[i].size=TOTAL_DATA_SIZE;
results[i].memblock[0]=portable_malloc(results[i].size);
results[i].seed1=results[0].seed1;
results[i].seed2=results[0].seed2;
results[i].seed3=results[0].seed3;
results[i].err=0;
results[i].execs=results[0].execs;
}
#elif (MEM_METHOD==MEM_STACK)
for (i=0 ; i<MULTITHREAD; i++) {
results[i].memblock[0]=stack_memblock+i*TOTAL_DATA_SIZE;
results[i].size=TOTAL_DATA_SIZE;
results[i].seed1=results[0].seed1;
results[i].seed2=results[0].seed2;
results[i].seed3=results[0].seed3;
results[i].err=0;
results[i].execs=results[0].execs;
}
#else
#error "Please define a way to initialize a memory block."
#endif
/* Data init */
/* Find out how space much we have based on number of algorithms */
for (i=0; i<NUM_ALGORITHMS; i++) {
if ((1<<(ee_u32)i) & results[0].execs)
num_algorithms++;
}
for (i=0 ; i<MULTITHREAD; i++)
results[i].size=results[i].size/num_algorithms;
/* Assign pointers */
for (i=0; i<NUM_ALGORITHMS; i++) {
ee_u32 ctx;
if ((1<<(ee_u32)i) & results[0].execs) {
for (ctx=0 ; ctx<MULTITHREAD; ctx++)
results[ctx].memblock[i+1]=(char *)(results[ctx].memblock[0])+results[0].size*j;
j++;
}
}
/* call inits */
for (i=0 ; i<MULTITHREAD; i++) {
if (results[i].execs & ID_LIST) {
results[i].list=core_list_init(results[0].size,results[i].memblock[1],results[i].seed1);
}
if (results[i].execs & ID_MATRIX) {
core_init_matrix(results[0].size, results[i].memblock[2], (ee_s32)results[i].seed1 | (((ee_s32)results[i].seed2) << 16), &(results[i].mat) );
}
if (results[i].execs & ID_STATE) {
core_init_state(results[0].size,results[i].seed1,results[i].memblock[3]);
}
}
/* automatically determine number of iterations if not set */
if (results[0].iterations==0) {
secs_ret secs_passed=0;
ee_u32 divisor;
results[0].iterations=1;
while (secs_passed < (secs_ret)1) {
results[0].iterations*=10;
start_time();
iterate(&results[0]);
stop_time();
secs_passed=time_in_secs(get_time());
}
/* now we know it executes for at least 1 sec, set actual run time at about 10 secs */
divisor=(ee_u32)secs_passed;
if (divisor==0) /* some machines cast float to int as 0 since this conversion is not defined by ANSI, but we know at least one second passed */
divisor=1;
results[0].iterations*=1+10/divisor;
}
/* perform actual benchmark */
start_time();
#if (MULTITHREAD>1)
if (default_num_contexts>MULTITHREAD) {
default_num_contexts=MULTITHREAD;
}
for (i=0 ; i<default_num_contexts; i++) {
results[i].iterations=results[0].iterations;
results[i].execs=results[0].execs;
core_start_parallel(&results[i]);
}
for (i=0 ; i<default_num_contexts; i++) {
core_stop_parallel(&results[i]);
}
#else
iterate(&results[0]);
#endif
stop_time();
total_time=get_time();
/* get a function of the input to report */
seedcrc=crc16(results[0].seed1,seedcrc);
seedcrc=crc16(results[0].seed2,seedcrc);
seedcrc=crc16(results[0].seed3,seedcrc);
seedcrc=crc16(results[0].size,seedcrc);
switch (seedcrc) { /* test known output for common seeds */
case 0x8a02: /* seed1=0, seed2=0, seed3=0x66, size 2000 per algorithm */
known_id=0;
ee_printf("6k performance run parameters for coremark.\n");
break;
case 0x7b05: /* seed1=0x3415, seed2=0x3415, seed3=0x66, size 2000 per algorithm */
known_id=1;
ee_printf("6k validation run parameters for coremark.\n");
break;
case 0x4eaf: /* seed1=0x8, seed2=0x8, seed3=0x8, size 400 per algorithm */
known_id=2;
ee_printf("Profile generation run parameters for coremark.\n");
break;
case 0xe9f5: /* seed1=0, seed2=0, seed3=0x66, size 666 per algorithm */
known_id=3;
ee_printf("2K performance run parameters for coremark.\n");
break;
case 0x18f2: /* seed1=0x3415, seed2=0x3415, seed3=0x66, size 666 per algorithm */
known_id=4;
ee_printf("2K validation run parameters for coremark.\n");
break;
default:
total_errors=-1;
break;
}
if (known_id>=0) {
for (i=0 ; i<default_num_contexts; i++) {
results[i].err=0;
if ((results[i].execs & ID_LIST) &&
(results[i].crclist!=list_known_crc[known_id])) {
ee_printf("[%u]ERROR! list crc 0x%04x - should be 0x%04x\n",i,results[i].crclist,list_known_crc[known_id]);
results[i].err++;
}
if ((results[i].execs & ID_MATRIX) &&
(results[i].crcmatrix!=matrix_known_crc[known_id])) {
ee_printf("[%u]ERROR! matrix crc 0x%04x - should be 0x%04x\n",i,results[i].crcmatrix,matrix_known_crc[known_id]);
results[i].err++;
}
if ((results[i].execs & ID_STATE) &&
(results[i].crcstate!=state_known_crc[known_id])) {
ee_printf("[%u]ERROR! state crc 0x%04x - should be 0x%04x\n",i,results[i].crcstate,state_known_crc[known_id]);
results[i].err++;
}
total_errors+=results[i].err;
}
}
total_errors+=check_data_types();
/* and report results */
ee_printf("CoreMark Size : %lu\n",(ee_u32)results[0].size);
ee_printf("Total ticks : %lu\n",(ee_u32)total_time);
#if HAS_FLOAT
ee_printf("Total time (secs): %f\n",time_in_secs(total_time));
if (time_in_secs(total_time) > 0)
ee_printf("Iterations/Sec : %f\n",default_num_contexts*results[0].iterations/time_in_secs(total_time));
#else
ee_printf("Total time (secs): %d\n",time_in_secs(total_time));
if (time_in_secs(total_time) > 0)
ee_printf("Iterations/Sec : %d\n",default_num_contexts*results[0].iterations/time_in_secs(total_time));
#endif
if (time_in_secs(total_time) < 10) {
ee_printf("ERROR! Must execute for at least 10 secs for a valid result!\n");
total_errors++;
}
ee_printf("Iterations : %lu\n",(ee_u32)default_num_contexts*results[0].iterations);
ee_printf("Compiler version : %s\n",COMPILER_VERSION);
ee_printf("Compiler flags : %s\n",COMPILER_FLAGS);
#if (MULTITHREAD>1)
ee_printf("Parallel %s : %d\n",PARALLEL_METHOD,default_num_contexts);
#endif
ee_printf("Memory location : %s\n",MEM_LOCATION);
/* output for verification */
ee_printf("seedcrc : 0x%04x\n",seedcrc);
if (results[0].execs & ID_LIST)
for (i=0 ; i<default_num_contexts; i++)
ee_printf("[%d]crclist : 0x%04x\n",i,results[i].crclist);
if (results[0].execs & ID_MATRIX)
for (i=0 ; i<default_num_contexts; i++)
ee_printf("[%d]crcmatrix : 0x%04x\n",i,results[i].crcmatrix);
if (results[0].execs & ID_STATE)
for (i=0 ; i<default_num_contexts; i++)
ee_printf("[%d]crcstate : 0x%04x\n",i,results[i].crcstate);
for (i=0 ; i<default_num_contexts; i++)
ee_printf("[%d]crcfinal : 0x%04x\n",i,results[i].crc);
if (total_errors==0) {
ee_printf("Correct operation validated. See readme.txt for run and reporting rules.\n");
#if HAS_FLOAT
if (known_id==3) {
ee_printf("CoreMark 1.0 : %f / %s %s",default_num_contexts*results[0].iterations/time_in_secs(total_time),COMPILER_VERSION,COMPILER_FLAGS);
#if defined(MEM_LOCATION) && !defined(MEM_LOCATION_UNSPEC)
ee_printf(" / %s",MEM_LOCATION);
#else
ee_printf(" / %s",mem_name[MEM_METHOD]);
#endif
#if (MULTITHREAD>1)
ee_printf(" / %d:%s",default_num_contexts,PARALLEL_METHOD);
#endif
ee_printf("\n");
}
#endif
}
if (total_errors>0)
ee_printf("Errors detected\n");
if (total_errors<0)
ee_printf("Cannot validate operation for these seed values, please compare with results on a known platform.\n");
#if (MEM_METHOD==MEM_MALLOC)
for (i=0 ; i<MULTITHREAD; i++)
portable_free(results[i].memblock[0]);
#endif
/* And last call any target specific code for finalizing */
portable_fini(&(results[0].port));
return MAIN_RETURN_VAL;
}

View File

@ -0,0 +1,308 @@
/*
Author : Shay Gal-On, EEMBC
This file is part of EEMBC(R) and CoreMark(TM), which are Copyright (C) 2009
All rights reserved.
EEMBC CoreMark Software is a product of EEMBC and is provided under the terms of the
CoreMark License that is distributed with the official EEMBC COREMARK Software release.
If you received this EEMBC CoreMark Software without the accompanying CoreMark License,
you must discontinue use and download the official release from www.coremark.org.
Also, if you are publicly displaying scores generated from the EEMBC CoreMark software,
make sure that you are in compliance with Run and Reporting rules specified in the accompanying readme.txt file.
EEMBC
4354 Town Center Blvd. Suite 114-200
El Dorado Hills, CA, 95762
*/
#include "coremark.h"
/*
Topic: Description
Matrix manipulation benchmark
This very simple algorithm forms the basis of many more complex algorithms.
The tight inner loop is the focus of many optimizations (compiler as well as hardware based)
and is thus relevant for embedded processing.
The total available data space will be divided to 3 parts:
NxN Matrix A - initialized with small values (upper 3/4 of the bits all zero).
NxN Matrix B - initialized with medium values (upper half of the bits all zero).
NxN Matrix C - used for the result.
The actual values for A and B must be derived based on input that is not available at compile time.
*/
ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val);
ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval);
void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val);
void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val);
#define matrix_test_next(x) (x+1)
#define matrix_clip(x,y) ((y) ? (x) & 0x0ff : (x) & 0x0ffff)
#define matrix_big(x) (0xf000 | (x))
#define bit_extract(x,from,to) (((x)>>(from)) & (~(0xffffffff << (to))))
#if CORE_DEBUG
void printmat(MATDAT *A, ee_u32 N, char *name) {
ee_u32 i,j;
ee_printf("Matrix %s [%dx%d]:\n",name,N,N);
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
if (j!=0)
ee_printf(",");
ee_printf("%d",A[i*N+j]);
}
ee_printf("\n");
}
}
void printmatC(MATRES *C, ee_u32 N, char *name) {
ee_u32 i,j;
ee_printf("Matrix %s [%dx%d]:\n",name,N,N);
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
if (j!=0)
ee_printf(",");
ee_printf("%d",C[i*N+j]);
}
ee_printf("\n");
}
}
#endif
/* Function: core_bench_matrix
Benchmark function
Iterate <matrix_test> N times,
changing the matrix values slightly by a constant amount each time.
*/
ee_u16 core_bench_matrix(mat_params *p, ee_s16 seed, ee_u16 crc) {
ee_u32 N=p->N;
MATRES *C=p->C;
MATDAT *A=p->A;
MATDAT *B=p->B;
MATDAT val=(MATDAT)seed;
crc=crc16(matrix_test(N,C,A,B,val),crc);
return crc;
}
/* Function: matrix_test
Perform matrix manipulation.
Parameters:
N - Dimensions of the matrix.
C - memory for result matrix.
A - input matrix
B - operator matrix (not changed during operations)
Returns:
A CRC value that captures all results calculated in the function.
In particular, crc of the value calculated on the result matrix
after each step by <matrix_sum>.
Operation:
1 - Add a constant value to all elements of a matrix.
2 - Multiply a matrix by a constant.
3 - Multiply a matrix by a vector.
4 - Multiply a matrix by a matrix.
5 - Add a constant value to all elements of a matrix.
After the last step, matrix A is back to original contents.
*/
ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val) {
ee_u16 crc=0;
MATDAT clipval=matrix_big(val);
matrix_add_const(N,A,val); /* make sure data changes */
#if CORE_DEBUG
printmat(A,N,"matrix_add_const");
#endif
matrix_mul_const(N,C,A,val);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_const");
#endif
matrix_mul_vect(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_vect");
#endif
matrix_mul_matrix(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_matrix");
#endif
matrix_mul_matrix_bitextract(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_matrix_bitextract");
#endif
matrix_add_const(N,A,-val); /* return matrix to initial value */
return crc;
}
/* Function : matrix_init
Initialize the memory block for matrix benchmarking.
Parameters:
blksize - Size of memory to be initialized.
memblk - Pointer to memory block.
seed - Actual values chosen depend on the seed parameter.
p - pointers to <mat_params> containing initialized matrixes.
Returns:
Matrix dimensions.
Note:
The seed parameter MUST be supplied from a source that cannot be determined at compile time
*/
ee_u32 core_init_matrix(ee_u32 blksize, void *memblk, ee_s32 seed, mat_params *p) {
ee_u32 N=0;
MATDAT *A;
MATDAT *B;
ee_s32 order=1;
MATDAT val;
ee_u32 i=0,j=0;
if (seed==0)
seed=1;
while (j<blksize) {
i++;
j=i*i*2*4;
}
N=i-1;
A=(MATDAT *)align_mem(memblk);
B=A+N*N;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
seed = ( ( order * seed ) % 65536 );
val = (seed + order);
val=matrix_clip(val,0);
B[i*N+j] = val;
val = (val + order);
val=matrix_clip(val,1);
A[i*N+j] = val;
order++;
}
}
p->A=A;
p->B=B;
p->C=(MATRES *)align_mem(B+N*N);
p->N=N;
#if CORE_DEBUG
printmat(A,N,"A");
printmat(B,N,"B");
#endif
return N;
}
/* Function: matrix_sum
Calculate a function that depends on the values of elements in the matrix.
For each element, accumulate into a temporary variable.
As long as this value is under the parameter clipval,
add 1 to the result if the element is bigger then the previous.
Otherwise, reset the accumulator and add 10 to the result.
*/
ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval) {
MATRES tmp=0,prev=0,cur=0;
ee_s16 ret=0;
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
cur=C[i*N+j];
tmp+=cur;
if (tmp>clipval) {
ret+=10;
tmp=0;
} else {
ret += (cur>prev) ? 1 : 0;
}
prev=cur;
}
}
return ret;
}
/* Function: matrix_mul_const
Multiply a matrix by a constant.
This could be used as a scaler for instance.
*/
void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val) {
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=(MATRES)A[i*N+j] * (MATRES)val;
}
}
}
/* Function: matrix_add_const
Add a constant value to all elements of a matrix.
*/
void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val) {
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
A[i*N+j] += val;
}
}
}
/* Function: matrix_mul_vect
Multiply a matrix by a vector.
This is common in many simple filters (e.g. fir where a vector of coefficients is applied to the matrix.)
*/
void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j;
for (i=0; i<N; i++) {
C[i]=0;
for (j=0; j<N; j++) {
C[i]+=(MATRES)A[i*N+j] * (MATRES)B[j];
}
}
}
/* Function: matrix_mul_matrix
Multiply a matrix by a matrix.
Basic code is used in many algorithms, mostly with minor changes such as scaling.
*/
void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j,k;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=0;
for(k=0;k<N;k++)
{
C[i*N+j]+=(MATRES)A[i*N+k] * (MATRES)B[k*N+j];
}
}
}
}
/* Function: matrix_mul_matrix_bitextract
Multiply a matrix by a matrix, and extract some bits from the result.
Basic code is used in many algorithms, mostly with minor changes such as scaling.
*/
void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j,k;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=0;
for(k=0;k<N;k++)
{
MATRES tmp=(MATRES)A[i*N+k] * (MATRES)B[k*N+j];
C[i*N+j]+=bit_extract(tmp,2,4)*bit_extract(tmp,5,7);
}
}
}
}

View File

@ -0,0 +1,66 @@
#include <stdio.h>
#include <stdlib.h>
#include "coremark.h"
#include "../include/utils.h"
#include "../include/uart.h"
#include "../include/xprintf.h"
#if VALIDATION_RUN
volatile ee_s32 seed1_volatile=0x3415;
volatile ee_s32 seed2_volatile=0x3415;
volatile ee_s32 seed3_volatile=0x66;
#endif
#if PERFORMANCE_RUN
volatile ee_s32 seed1_volatile=0x0;
volatile ee_s32 seed2_volatile=0x0;
volatile ee_s32 seed3_volatile=0x66;
#endif
#if PROFILE_RUN
volatile ee_s32 seed1_volatile=0x8;
volatile ee_s32 seed2_volatile=0x8;
volatile ee_s32 seed3_volatile=0x8;
#endif
volatile ee_s32 seed4_volatile=ITERATIONS;
volatile ee_s32 seed5_volatile=0;
static CORE_TICKS t0, t1;
void start_time(void)
{
t0 = get_cycle_value();
}
void stop_time(void)
{
t1 = get_cycle_value();
}
CORE_TICKS get_time(void)
{
return t1 - t0;
}
secs_ret time_in_secs(CORE_TICKS ticks)
{
// scale timer down to avoid uint64_t -> double conversion in RV32
int scale = 256;
uint32_t delta = ticks / scale;
uint32_t freq = CPU_FREQ_HZ / scale;
return delta / (double)freq;
}
static void uart_putc(uint8_t c)
{
while (UART0_REG(UART0_STATUS) & 0x1);
UART0_REG(UART0_TXDATA) = c;
}
void portable_init(core_portable *p, int *argc, char *argv[])
{
UART0_REG(UART0_CTRL) = 0x1;
xdev_out(uart_putc);
}

View File

@ -0,0 +1,65 @@
//Bob: put some macro here such that the IDE SDK do not need to specify the macro specially
#define FLAGS_STR "-O2 -fno-common -funroll-loops -finline-functions --param max-inline-insns-auto=20 -falign-functions=4 -falign-jumps=4 -falign-loops=4"
#define PERFORMANCE_RUN 1
#define ITERATIONS 10000
#ifndef FESDK_CORE_PORTME_H
#define FESDK_CORE_PORTME_H
#include <stdint.h>
#include <stddef.h>
#include "../include/xprintf.h"
#define HAS_FLOAT 0
#define HAS_TIME_H 1
#define USE_CLOCK 1
#define HAS_STDIO 1
#define HAS_PRINTF 1
#define SEED_METHOD SEED_VOLATILE
#define CORE_TICKS uint64_t
#define ee_u8 uint8_t
#define ee_u16 uint16_t
#define ee_u32 uint32_t
#define ee_s16 int16_t
#define ee_s32 int32_t
#define ee_ptr_int uintptr_t
#define ee_size_t size_t
#define COMPILER_FLAGS FLAGS_STR
#define align_mem(x) (void *)(((ee_ptr_int)(x) + sizeof(ee_u32) - 1) & -sizeof(ee_u32))
#ifdef __GNUC__
# define COMPILER_VERSION "GCC"__VERSION__
#else
# error
#endif
#define MEM_METHOD MEM_STATIC
#define MEM_LOCATION "STATIC"
#define MAIN_HAS_NOARGC 0
#define MAIN_HAS_NORETURN 0
#define MULTITHREAD 1
#define USE_PTHREAD 0
#define USE_FORK 0
#define USE_SOCKET 0
#define default_num_contexts MULTITHREAD
typedef int core_portable;
void portable_init(core_portable *p, int *argc, char *argv[]);
static void portable_fini(core_portable *p) {}
#if !defined(PROFILE_RUN) && !defined(PERFORMANCE_RUN) && !defined(VALIDATION_RUN)
#if (TOTAL_DATA_SIZE==1200)
#define PROFILE_RUN 1
#elif (TOTAL_DATA_SIZE==2000)
#define PERFORMANCE_RUN 1
#else
#define VALIDATION_RUN 1
#endif
#endif
#endif

View File

@ -0,0 +1,277 @@
/*
Author : Shay Gal-On, EEMBC
This file is part of EEMBC(R) and CoreMark(TM), which are Copyright (C) 2009
All rights reserved.
EEMBC CoreMark Software is a product of EEMBC and is provided under the terms of the
CoreMark License that is distributed with the official EEMBC COREMARK Software release.
If you received this EEMBC CoreMark Software without the accompanying CoreMark License,
you must discontinue use and download the official release from www.coremark.org.
Also, if you are publicly displaying scores generated from the EEMBC CoreMark software,
make sure that you are in compliance with Run and Reporting rules specified in the accompanying readme.txt file.
EEMBC
4354 Town Center Blvd. Suite 114-200
El Dorado Hills, CA, 95762
*/
#include "coremark.h"
/* local functions */
enum CORE_STATE core_state_transition( ee_u8 **instr , ee_u32 *transition_count);
/*
Topic: Description
Simple state machines like this one are used in many embedded products.
For more complex state machines, sometimes a state transition table implementation is used instead,
trading speed of direct coding for ease of maintenance.
Since the main goal of using a state machine in CoreMark is to excercise the switch/if behaviour,
we are using a small moore machine.
In particular, this machine tests type of string input,
trying to determine whether the input is a number or something else.
(see core_state.png).
*/
/* Function: core_bench_state
Benchmark function
Go over the input twice, once direct, and once after introducing some corruption.
*/
ee_u16 core_bench_state(ee_u32 blksize, ee_u8 *memblock,
ee_s16 seed1, ee_s16 seed2, ee_s16 step, ee_u16 crc)
{
ee_u32 final_counts[NUM_CORE_STATES];
ee_u32 track_counts[NUM_CORE_STATES];
ee_u8 *p=memblock;
ee_u32 i;
#if CORE_DEBUG
ee_printf("State Bench: %d,%d,%d,%04x\n",seed1,seed2,step,crc);
#endif
for (i=0; i<NUM_CORE_STATES; i++) {
final_counts[i]=track_counts[i]=0;
}
/* run the state machine over the input */
while (*p!=0) {
enum CORE_STATE fstate=core_state_transition(&p,track_counts);
final_counts[fstate]++;
#if CORE_DEBUG
ee_printf("%d,",fstate);
}
ee_printf("\n");
#else
}
#endif
p=memblock;
while (p < (memblock+blksize)) { /* insert some corruption */
if (*p!=',')
*p^=(ee_u8)seed1;
p+=step;
}
p=memblock;
/* run the state machine over the input again */
while (*p!=0) {
enum CORE_STATE fstate=core_state_transition(&p,track_counts);
final_counts[fstate]++;
#if CORE_DEBUG
ee_printf("%d,",fstate);
}
ee_printf("\n");
#else
}
#endif
p=memblock;
while (p < (memblock+blksize)) { /* undo corruption is seed1 and seed2 are equal */
if (*p!=',')
*p^=(ee_u8)seed2;
p+=step;
}
/* end timing */
for (i=0; i<NUM_CORE_STATES; i++) {
crc=crcu32(final_counts[i],crc);
crc=crcu32(track_counts[i],crc);
}
return crc;
}
/* Default initialization patterns */
static ee_u8 *intpat[4] ={(ee_u8 *)"5012",(ee_u8 *)"1234",(ee_u8 *)"-874",(ee_u8 *)"+122"};
static ee_u8 *floatpat[4]={(ee_u8 *)"35.54400",(ee_u8 *)".1234500",(ee_u8 *)"-110.700",(ee_u8 *)"+0.64400"};
static ee_u8 *scipat[4] ={(ee_u8 *)"5.500e+3",(ee_u8 *)"-.123e-2",(ee_u8 *)"-87e+832",(ee_u8 *)"+0.6e-12"};
static ee_u8 *errpat[4] ={(ee_u8 *)"T0.3e-1F",(ee_u8 *)"-T.T++Tq",(ee_u8 *)"1T3.4e4z",(ee_u8 *)"34.0e-T^"};
/* Function: core_init_state
Initialize the input data for the state machine.
Populate the input with several predetermined strings, interspersed.
Actual patterns chosen depend on the seed parameter.
Note:
The seed parameter MUST be supplied from a source that cannot be determined at compile time
*/
void core_init_state(ee_u32 size, ee_s16 seed, ee_u8 *p) {
ee_u32 total=0,next=0,i;
ee_u8 *buf=0;
#if CORE_DEBUG
ee_u8 *start=p;
ee_printf("State: %d,%d\n",size,seed);
#endif
size--;
next=0;
while ((total+next+1)<size) {
if (next>0) {
for(i=0;i<next;i++)
*(p+total+i)=buf[i];
*(p+total+i)=',';
total+=next+1;
}
seed++;
switch (seed & 0x7) {
case 0: /* int */
case 1: /* int */
case 2: /* int */
buf=intpat[(seed>>3) & 0x3];
next=4;
break;
case 3: /* float */
case 4: /* float */
buf=floatpat[(seed>>3) & 0x3];
next=8;
break;
case 5: /* scientific */
case 6: /* scientific */
buf=scipat[(seed>>3) & 0x3];
next=8;
break;
case 7: /* invalid */
buf=errpat[(seed>>3) & 0x3];
next=8;
break;
default: /* Never happen, just to make some compilers happy */
break;
}
}
size++;
while (total<size) { /* fill the rest with 0 */
*(p+total)=0;
total++;
}
#if CORE_DEBUG
ee_printf("State Input: %s\n",start);
#endif
}
static ee_u8 ee_isdigit(ee_u8 c) {
ee_u8 retval;
retval = ((c>='0') & (c<='9')) ? 1 : 0;
return retval;
}
/* Function: core_state_transition
Actual state machine.
The state machine will continue scanning until either:
1 - an invalid input is detcted.
2 - a valid number has been detected.
The input pointer is updated to point to the end of the token, and the end state is returned (either specific format determined or invalid).
*/
enum CORE_STATE core_state_transition( ee_u8 **instr , ee_u32 *transition_count) {
ee_u8 *str=*instr;
ee_u8 NEXT_SYMBOL;
enum CORE_STATE state=CORE_START;
for( ; *str && state != CORE_INVALID; str++ ) {
NEXT_SYMBOL = *str;
if (NEXT_SYMBOL==',') /* end of this input */ {
str++;
break;
}
switch(state) {
case CORE_START:
if(ee_isdigit(NEXT_SYMBOL)) {
state = CORE_INT;
}
else if( NEXT_SYMBOL == '+' || NEXT_SYMBOL == '-' ) {
state = CORE_S1;
}
else if( NEXT_SYMBOL == '.' ) {
state = CORE_FLOAT;
}
else {
state = CORE_INVALID;
transition_count[CORE_INVALID]++;
}
transition_count[CORE_START]++;
break;
case CORE_S1:
if(ee_isdigit(NEXT_SYMBOL)) {
state = CORE_INT;
transition_count[CORE_S1]++;
}
else if( NEXT_SYMBOL == '.' ) {
state = CORE_FLOAT;
transition_count[CORE_S1]++;
}
else {
state = CORE_INVALID;
transition_count[CORE_S1]++;
}
break;
case CORE_INT:
if( NEXT_SYMBOL == '.' ) {
state = CORE_FLOAT;
transition_count[CORE_INT]++;
}
else if(!ee_isdigit(NEXT_SYMBOL)) {
state = CORE_INVALID;
transition_count[CORE_INT]++;
}
break;
case CORE_FLOAT:
if( NEXT_SYMBOL == 'E' || NEXT_SYMBOL == 'e' ) {
state = CORE_S2;
transition_count[CORE_FLOAT]++;
}
else if(!ee_isdigit(NEXT_SYMBOL)) {
state = CORE_INVALID;
transition_count[CORE_FLOAT]++;
}
break;
case CORE_S2:
if( NEXT_SYMBOL == '+' || NEXT_SYMBOL == '-' ) {
state = CORE_EXPONENT;
transition_count[CORE_S2]++;
}
else {
state = CORE_INVALID;
transition_count[CORE_S2]++;
}
break;
case CORE_EXPONENT:
if(ee_isdigit(NEXT_SYMBOL)) {
state = CORE_SCIENTIFIC;
transition_count[CORE_EXPONENT]++;
}
else {
state = CORE_INVALID;
transition_count[CORE_EXPONENT]++;
}
break;
case CORE_SCIENTIFIC:
if(!ee_isdigit(NEXT_SYMBOL)) {
state = CORE_INVALID;
transition_count[CORE_INVALID]++;
}
break;
default:
break;
}
}
*instr=str;
return state;
}

View File

@ -0,0 +1,210 @@
/*
Author : Shay Gal-On, EEMBC
This file is part of EEMBC(R) and CoreMark(TM), which are Copyright (C) 2009
All rights reserved.
EEMBC CoreMark Software is a product of EEMBC and is provided under the terms of the
CoreMark License that is distributed with the official EEMBC COREMARK Software release.
If you received this EEMBC CoreMark Software without the accompanying CoreMark License,
you must discontinue use and download the official release from www.coremark.org.
Also, if you are publicly displaying scores generated from the EEMBC CoreMark software,
make sure that you are in compliance with Run and Reporting rules specified in the accompanying readme.txt file.
EEMBC
4354 Town Center Blvd. Suite 114-200
El Dorado Hills, CA, 95762
*/
#include "coremark.h"
/* Function: get_seed
Get a values that cannot be determined at compile time.
Since different embedded systems and compilers are used, 3 different methods are provided:
1 - Using a volatile variable. This method is only valid if the compiler is forced to generate code that
reads the value of a volatile variable from memory at run time.
Please note, if using this method, you would need to modify core_portme.c to generate training profile.
2 - Command line arguments. This is the preferred method if command line arguments are supported.
3 - System function. If none of the first 2 methods is available on the platform,
a system function which is not a stub can be used.
e.g. read the value on GPIO pins connected to switches, or invoke special simulator functions.
*/
#if (SEED_METHOD==SEED_VOLATILE)
extern volatile ee_s32 seed1_volatile;
extern volatile ee_s32 seed2_volatile;
extern volatile ee_s32 seed3_volatile;
extern volatile ee_s32 seed4_volatile;
extern volatile ee_s32 seed5_volatile;
ee_s32 get_seed_32(int i) {
ee_s32 retval;
switch (i) {
case 1:
retval=seed1_volatile;
break;
case 2:
retval=seed2_volatile;
break;
case 3:
retval=seed3_volatile;
break;
case 4:
retval=seed4_volatile;
break;
case 5:
retval=seed5_volatile;
break;
default:
retval=0;
break;
}
return retval;
}
#elif (SEED_METHOD==SEED_ARG)
ee_s32 parseval(char *valstring) {
ee_s32 retval=0;
ee_s32 neg=1;
int hexmode=0;
if (*valstring == '-') {
neg=-1;
valstring++;
}
if ((valstring[0] == '0') && (valstring[1] == 'x')) {
hexmode=1;
valstring+=2;
}
/* first look for digits */
if (hexmode) {
while (((*valstring >= '0') && (*valstring <= '9')) || ((*valstring >= 'a') && (*valstring <= 'f'))) {
ee_s32 digit=*valstring-'0';
if (digit>9)
digit=10+*valstring-'a';
retval*=16;
retval+=digit;
valstring++;
}
} else {
while ((*valstring >= '0') && (*valstring <= '9')) {
ee_s32 digit=*valstring-'0';
retval*=10;
retval+=digit;
valstring++;
}
}
/* now add qualifiers */
if (*valstring=='K')
retval*=1024;
if (*valstring=='M')
retval*=1024*1024;
retval*=neg;
return retval;
}
ee_s32 get_seed_args(int i, int argc, char *argv[]) {
if (argc>i)
return parseval(argv[i]);
return 0;
}
#elif (SEED_METHOD==SEED_FUNC)
/* If using OS based function, you must define and implement the functions below in core_portme.h and core_portme.c ! */
ee_s32 get_seed_32(int i) {
ee_s32 retval;
switch (i) {
case 1:
retval=portme_sys1();
break;
case 2:
retval=portme_sys2();
break;
case 3:
retval=portme_sys3();
break;
case 4:
retval=portme_sys4();
break;
case 5:
retval=portme_sys5();
break;
default:
retval=0;
break;
}
return retval;
}
#endif
/* Function: crc*
Service functions to calculate 16b CRC code.
*/
ee_u16 crcu8(ee_u8 data, ee_u16 crc )
{
ee_u8 i=0,x16=0,carry=0;
for (i = 0; i < 8; i++)
{
x16 = (ee_u8)((data & 1) ^ ((ee_u8)crc & 1));
data >>= 1;
if (x16 == 1)
{
crc ^= 0x4002;
carry = 1;
}
else
carry = 0;
crc >>= 1;
if (carry)
crc |= 0x8000;
else
crc &= 0x7fff;
}
return crc;
}
ee_u16 crcu16(ee_u16 newval, ee_u16 crc) {
crc=crcu8( (ee_u8) (newval) ,crc);
crc=crcu8( (ee_u8) ((newval)>>8) ,crc);
return crc;
}
ee_u16 crcu32(ee_u32 newval, ee_u16 crc) {
crc=crc16((ee_s16) newval ,crc);
crc=crc16((ee_s16) (newval>>16) ,crc);
return crc;
}
ee_u16 crc16(ee_s16 newval, ee_u16 crc) {
return crcu16((ee_u16)newval, crc);
}
ee_u8 check_data_types() {
ee_u8 retval=0;
if (sizeof(ee_u8) != 1) {
ee_printf("ERROR: ee_u8 is not an 8b datatype!\n");
retval++;
}
if (sizeof(ee_u16) != 2) {
ee_printf("ERROR: ee_u16 is not a 16b datatype!\n");
retval++;
}
if (sizeof(ee_s16) != 2) {
ee_printf("ERROR: ee_s16 is not a 16b datatype!\n");
retval++;
}
if (sizeof(ee_s32) != 4) {
ee_printf("ERROR: ee_s32 is not a 32b datatype!\n");
retval++;
}
if (sizeof(ee_u32) != 4) {
ee_printf("ERROR: ee_u32 is not a 32b datatype!\n");
retval++;
}
if (sizeof(ee_ptr_int) != sizeof(int *)) {
ee_printf("ERROR: ee_ptr_int is not a datatype that holds an int pointer!\n");
retval++;
}
if (retval>0) {
ee_printf("ERROR: Please modify the datatypes in core_portme.h!\n");
}
return retval;
}

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,174 @@
/*
Author : Shay Gal-On, EEMBC
This file is part of EEMBC(R) and CoreMark(TM), which are Copyright (C) 2009
All rights reserved.
EEMBC CoreMark Software is a product of EEMBC and is provided under the terms of the
CoreMark License that is distributed with the official EEMBC COREMARK Software release.
If you received this EEMBC CoreMark Software without the accompanying CoreMark License,
you must discontinue use and download the official release from www.coremark.org.
Also, if you are publicly displaying scores generated from the EEMBC CoreMark software,
make sure that you are in compliance with Run and Reporting rules specified in the accompanying readme.txt file.
EEMBC
4354 Town Center Blvd. Suite 114-200
El Dorado Hills, CA, 95762
*/
/* Topic: Description
This file contains declarations of the various benchmark functions.
*/
/* Configuration: TOTAL_DATA_SIZE
Define total size for data algorithms will operate on
*/
#ifndef TOTAL_DATA_SIZE
#define TOTAL_DATA_SIZE 2*1000
#endif
#define SEED_ARG 0
#define SEED_FUNC 1
#define SEED_VOLATILE 2
#define MEM_STATIC 0
#define MEM_MALLOC 1
#define MEM_STACK 2
#include "core_portme.h"
#if HAS_STDIO
#include <stdio.h>
#endif
#if HAS_PRINTF
#define ee_printf xprintf
#endif
/* Actual benchmark execution in iterate */
void *iterate(void *pres);
/* Typedef: secs_ret
For machines that have floating point support, get number of seconds as a double.
Otherwise an unsigned int.
*/
#if HAS_FLOAT
typedef double secs_ret;
#else
typedef ee_u32 secs_ret;
#endif
#if MAIN_HAS_NORETURN
#define MAIN_RETURN_VAL
#define MAIN_RETURN_TYPE void
#else
#define MAIN_RETURN_VAL 0
#define MAIN_RETURN_TYPE int
#endif
void start_time(void);
void stop_time(void);
CORE_TICKS get_time(void);
secs_ret time_in_secs(CORE_TICKS ticks);
/* Misc useful functions */
ee_u16 crcu8(ee_u8 data, ee_u16 crc);
ee_u16 crc16(ee_s16 newval, ee_u16 crc);
ee_u16 crcu16(ee_u16 newval, ee_u16 crc);
ee_u16 crcu32(ee_u32 newval, ee_u16 crc);
ee_u8 check_data_types();
void *portable_malloc(ee_size_t size);
void portable_free(void *p);
ee_s32 parseval(char *valstring);
/* Algorithm IDS */
#define ID_LIST (1<<0)
#define ID_MATRIX (1<<1)
#define ID_STATE (1<<2)
#define ALL_ALGORITHMS_MASK (ID_LIST|ID_MATRIX|ID_STATE)
#define NUM_ALGORITHMS 3
/* list data structures */
typedef struct list_data_s {
ee_s16 data16;
ee_s16 idx;
} list_data;
typedef struct list_head_s {
struct list_head_s *next;
struct list_data_s *info;
} list_head;
/*matrix benchmark related stuff */
#define MATDAT_INT 1
#if MATDAT_INT
typedef ee_s16 MATDAT;
typedef ee_s32 MATRES;
#else
typedef ee_f16 MATDAT;
typedef ee_f32 MATRES;
#endif
typedef struct MAT_PARAMS_S {
int N;
MATDAT *A;
MATDAT *B;
MATRES *C;
} mat_params;
/* state machine related stuff */
/* List of all the possible states for the FSM */
typedef enum CORE_STATE {
CORE_START=0,
CORE_INVALID,
CORE_S1,
CORE_S2,
CORE_INT,
CORE_FLOAT,
CORE_EXPONENT,
CORE_SCIENTIFIC,
NUM_CORE_STATES
} core_state_e ;
/* Helper structure to hold results */
typedef struct RESULTS_S {
/* inputs */
ee_s16 seed1; /* Initializing seed */
ee_s16 seed2; /* Initializing seed */
ee_s16 seed3; /* Initializing seed */
void *memblock[4]; /* Pointer to safe memory location */
ee_u32 size; /* Size of the data */
ee_u32 iterations; /* Number of iterations to execute */
ee_u32 execs; /* Bitmask of operations to execute */
struct list_head_s *list;
mat_params mat;
/* outputs */
ee_u16 crc;
ee_u16 crclist;
ee_u16 crcmatrix;
ee_u16 crcstate;
ee_s16 err;
/* ultithread specific */
core_portable port;
} core_results;
/* Multicore execution handling */
#if (MULTITHREAD>1)
ee_u8 core_start_parallel(core_results *res);
ee_u8 core_stop_parallel(core_results *res);
#endif
/* list benchmark functions */
list_head *core_list_init(ee_u32 blksize, list_head *memblock, ee_s16 seed);
ee_u16 core_bench_list(core_results *res, ee_s16 finder_idx);
/* state benchmark functions */
void core_init_state(ee_u32 size, ee_s16 seed, ee_u8 *p);
ee_u16 core_bench_state(ee_u32 blksize, ee_u8 *memblock,
ee_s16 seed1, ee_s16 seed2, ee_s16 step, ee_u16 crc);
/* matrix benchmark functions */
ee_u32 core_init_matrix(ee_u32 blksize, void *memblk, ee_s32 seed, mat_params *p);
ee_u16 core_bench_matrix(mat_params *p, ee_s16 seed, ee_u16 crc);