// Copyright 2018 ETH Zurich and University of Bologna. // Copyright and related rights are licensed under the Solderpad Hardware // License, Version 0.51 (the "License"); you may not use this file except in // compliance with the License. You may obtain a copy of the License at // http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law // or agreed to in writing, software, hardware and materials distributed under // this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. // Author: Florian Zaruba module sync_fifo #( parameter bit FALL_THROUGH = 1'b0, // fifo is in fall-through mode parameter int unsigned DATA_WIDTH = 32, // default data width if the fifo is of type logic parameter int unsigned DEPTH = 8, // depth can be arbitrary from 0 to 2**32 parameter type dtype = logic [DATA_WIDTH-1:0], // DO NOT OVERWRITE THIS PARAMETER parameter int unsigned ADDR_DEPTH = (DEPTH > 1) ? $clog2(DEPTH) : 1 )( input logic clk_i, // Clock input logic rst_ni, // Asynchronous reset active low input logic flush_i, // flush the queue input logic testmode_i, // test_mode to bypass clock gating // status flags output logic full_o, // queue is full output logic empty_o, // queue is empty output logic [ADDR_DEPTH-1:0] usage_o, // fill pointer // as long as the queue is not full we can push new data input dtype data_i, // data to push into the queue input logic push_i, // data is valid and can be pushed to the queue // as long as the queue is not empty we can pop new elements output dtype data_o, // output data input logic pop_i // pop head from queue ); // local parameter // FIFO depth - handle the case of pass-through, synthesizer will do constant propagation localparam int unsigned FifoDepth = (DEPTH > 0) ? DEPTH : 1; // clock gating control logic gate_clock; // pointer to the read and write section of the queue logic [ADDR_DEPTH - 1:0] read_pointer_n, read_pointer_q, write_pointer_n, write_pointer_q; // keep a counter to keep track of the current queue status // this integer will be truncated by the synthesis tool logic [ADDR_DEPTH:0] status_cnt_n, status_cnt_q; // actual memory dtype [FifoDepth - 1:0] mem_n, mem_q; assign usage_o = status_cnt_q[ADDR_DEPTH-1:0]; if (DEPTH == 0) begin : gen_pass_through assign empty_o = ~push_i; assign full_o = ~pop_i; end else begin : gen_fifo assign full_o = (status_cnt_q == FifoDepth[ADDR_DEPTH:0]); assign empty_o = (status_cnt_q == 0) & ~(FALL_THROUGH & push_i); end // status flags // read and write queue logic always_comb begin : read_write_comb // default assignment read_pointer_n = read_pointer_q; write_pointer_n = write_pointer_q; status_cnt_n = status_cnt_q; data_o = (DEPTH == 0) ? data_i : mem_q[read_pointer_q]; mem_n = mem_q; gate_clock = 1'b1; // push a new element to the queue if (push_i && ~full_o) begin // push the data onto the queue mem_n[write_pointer_q] = data_i; // un-gate the clock, we want to write something gate_clock = 1'b0; // increment the write counter if (write_pointer_q == FifoDepth[ADDR_DEPTH-1:0] - 1) write_pointer_n = '0; else write_pointer_n = write_pointer_q + 1; // increment the overall counter status_cnt_n = status_cnt_q + 1; end if (pop_i && ~empty_o) begin // read from the queue is a default assignment // but increment the read pointer... if (read_pointer_n == FifoDepth[ADDR_DEPTH-1:0] - 1) read_pointer_n = '0; else read_pointer_n = read_pointer_q + 1; // ... and decrement the overall count status_cnt_n = status_cnt_q - 1; end // keep the count pointer stable if we push and pop at the same time if (push_i && pop_i && ~full_o && ~empty_o) status_cnt_n = status_cnt_q; // FIFO is in pass through mode -> do not change the pointers if (FALL_THROUGH && (status_cnt_q == 0) && push_i) begin data_o = data_i; if (pop_i) begin status_cnt_n = status_cnt_q; read_pointer_n = read_pointer_q; write_pointer_n = write_pointer_q; end end end // sequential process always_ff @(posedge clk_i or negedge rst_ni) begin if(~rst_ni) begin read_pointer_q <= '0; write_pointer_q <= '0; status_cnt_q <= '0; end else begin if (flush_i) begin read_pointer_q <= '0; write_pointer_q <= '0; status_cnt_q <= '0; end else begin read_pointer_q <= read_pointer_n; write_pointer_q <= write_pointer_n; status_cnt_q <= status_cnt_n; end end end always_ff @(posedge clk_i or negedge rst_ni) begin if(~rst_ni) begin mem_q <= '0; end else if (!gate_clock) begin mem_q <= mem_n; end end endmodule