2021-08-17 17:01:19 +00:00
|
|
|
|
/**
|
|
|
|
|
Deng's FOC 闭环速度控制例程 测试库:SimpleFOC 2.1.1 测试硬件:灯哥开源FOC V1.0
|
|
|
|
|
在串口窗口中输入:T+速度,就可以使得两个电机闭环转动
|
|
|
|
|
比如让两个电机都以 10rad/s 的速度转动,则输入:T10
|
|
|
|
|
在使用自己的电机时,请一定记得修改默认极对数,即 BLDCMotor(7) 中的值,设置为自己的极对数数字
|
|
|
|
|
程序默认设置的供电电压为 16.8V,用其他电压供电请记得修改 voltage_power_supply , voltage_limit 变量中的值
|
|
|
|
|
默认PID针对的电机是 GB6010 ,使用自己的电机需要修改PID参数,才能实现更好效果
|
|
|
|
|
*/
|
|
|
|
|
#include <SimpleFOC.h>
|
|
|
|
|
#include <WiFi.h>
|
|
|
|
|
#include <AsyncUDP.h> //引用以使用异步UDP
|
2021-08-25 08:23:23 +00:00
|
|
|
|
#include <Kalman.h> // Source: https://github.com/TKJElectronics/KalmanFilter
|
|
|
|
|
Kalman kalmanZ;
|
|
|
|
|
#define gyroZ_OFF -0.72
|
|
|
|
|
/* ----IMU Data---- */
|
|
|
|
|
float PID_P = 8; //
|
|
|
|
|
float PID_I = 0; //
|
|
|
|
|
float PID_D = 0; //
|
|
|
|
|
double accX, accY, accZ;
|
|
|
|
|
double gyroX, gyroY, gyroZ;
|
|
|
|
|
int16_t tempRaw;
|
|
|
|
|
|
|
|
|
|
double gyroZangle; // Angle calculate using the gyro only
|
|
|
|
|
double compAngleZ; // Calculated angle using a complementary filter
|
|
|
|
|
double kalAngleZ; // Calculated angle using a Kalman filter
|
|
|
|
|
|
|
|
|
|
uint32_t timer;
|
|
|
|
|
uint8_t i2cData[14]; // Buffer for I2C data
|
|
|
|
|
/* ----FOC Data---- */
|
|
|
|
|
|
|
|
|
|
// driver instance
|
|
|
|
|
double acc2rotation(double x, double y);
|
2021-08-17 17:01:19 +00:00
|
|
|
|
|
|
|
|
|
const char *ssid = "esp32";
|
|
|
|
|
const char *password = "12345678";
|
|
|
|
|
|
2021-08-25 08:23:23 +00:00
|
|
|
|
|
2021-08-17 17:01:19 +00:00
|
|
|
|
AsyncUDP udp; //创建UDP对象
|
|
|
|
|
unsigned int localUdpPort = 2333; //本地端口号
|
2021-08-25 08:23:23 +00:00
|
|
|
|
unsigned int broadcastPort = localUdpPort;
|
2021-08-17 17:01:19 +00:00
|
|
|
|
|
|
|
|
|
MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C);
|
|
|
|
|
|
2021-08-25 08:23:23 +00:00
|
|
|
|
TwoWire I2Ctwo = TwoWire(1);
|
2021-08-17 17:01:19 +00:00
|
|
|
|
|
2021-08-25 08:23:23 +00:00
|
|
|
|
//倒立摆参数
|
|
|
|
|
float LQR_K1 = 200; //摇摆到平衡
|
|
|
|
|
float LQR_K2 = 15; //
|
|
|
|
|
float LQR_K3 = 0.15; //
|
2021-08-17 17:01:19 +00:00
|
|
|
|
|
|
|
|
|
//电机参数
|
|
|
|
|
BLDCMotor motor = BLDCMotor(5);
|
|
|
|
|
BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25, 22);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//命令设置
|
|
|
|
|
int target_velocity = 0;
|
2021-08-25 08:23:23 +00:00
|
|
|
|
int target_angle = 149;
|
2021-08-17 17:01:19 +00:00
|
|
|
|
void onPacketCallBack(AsyncUDPPacket packet)
|
|
|
|
|
{
|
|
|
|
|
target_velocity = atoi((char*)(packet.data()));
|
|
|
|
|
Serial.print("数据内容: ");
|
|
|
|
|
Serial.println(target_velocity);
|
|
|
|
|
// packet.print("reply data");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void setup() {
|
|
|
|
|
Serial.begin(115200);
|
2021-08-25 08:23:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// kalman mpu6050 init
|
|
|
|
|
Wire.begin(19, 18,400000);// Set I2C frequency to 400kHz
|
|
|
|
|
i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
|
|
|
|
|
i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
|
|
|
|
|
i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
|
|
|
|
|
i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
|
|
|
|
|
while (i2cWrite(0x19, i2cData, 4, false))
|
|
|
|
|
; // Write to all four registers at once
|
|
|
|
|
while (i2cWrite(0x6B, 0x01, true))
|
|
|
|
|
; // PLL with X axis gyroscope reference and disable sleep mode
|
|
|
|
|
|
|
|
|
|
while (i2cRead(0x75, i2cData, 1))
|
|
|
|
|
;
|
|
|
|
|
if (i2cData[0] != 0x68)
|
|
|
|
|
{ // Read "WHO_AM_I" register
|
|
|
|
|
Serial.print(F("Error reading sensor"));
|
|
|
|
|
while (1)
|
|
|
|
|
;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
delay(100); // Wait for sensor to stabilize
|
|
|
|
|
|
|
|
|
|
/* Set kalman and gyro starting angle */
|
|
|
|
|
while (i2cRead(0x3B, i2cData, 6))
|
|
|
|
|
;
|
|
|
|
|
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
|
|
|
|
|
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
|
|
|
|
|
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
|
|
|
|
|
double pitch = acc2rotation(accX, accY);
|
|
|
|
|
|
|
|
|
|
kalmanZ.setAngle(pitch);
|
|
|
|
|
gyroZangle = pitch;
|
|
|
|
|
|
|
|
|
|
timer = micros();
|
|
|
|
|
Serial.println("kalman mpu6050 init");
|
|
|
|
|
|
|
|
|
|
//wifi初始化
|
2021-08-17 17:01:19 +00:00
|
|
|
|
WiFi.mode(WIFI_AP);
|
|
|
|
|
while(!WiFi.softAP(ssid, password)){}; //启动AP
|
|
|
|
|
Serial.println("AP启动成功");
|
|
|
|
|
while (!udp.listen(localUdpPort)) //等待udp监听设置成功
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
udp.onPacket(onPacketCallBack); //注册收到数据包事件
|
2021-08-25 08:23:23 +00:00
|
|
|
|
|
|
|
|
|
I2Ctwo.begin(23, 5, 400000); //SDA,SCL
|
|
|
|
|
sensor.init(&I2Ctwo);
|
2021-08-17 17:01:19 +00:00
|
|
|
|
|
|
|
|
|
//连接motor对象与传感器对象
|
|
|
|
|
motor.linkSensor(&sensor);
|
|
|
|
|
|
|
|
|
|
//供电电压设置 [V]
|
|
|
|
|
driver.voltage_power_supply = 12;
|
|
|
|
|
driver.init();
|
|
|
|
|
|
|
|
|
|
//连接电机和driver对象
|
|
|
|
|
motor.linkDriver(&driver);
|
|
|
|
|
|
|
|
|
|
//FOC模型选择
|
|
|
|
|
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;
|
|
|
|
|
|
|
|
|
|
//运动控制模式设置
|
|
|
|
|
motor.controller = MotionControlType::velocity;
|
|
|
|
|
|
|
|
|
|
//速度PI环设置
|
|
|
|
|
motor.PID_velocity.P = 1.5;
|
|
|
|
|
motor.PID_velocity.I = 20;
|
|
|
|
|
|
|
|
|
|
//最大电机限制电机
|
|
|
|
|
motor.voltage_limit = 12;
|
|
|
|
|
|
|
|
|
|
//速度低通滤波时间常数
|
|
|
|
|
motor.LPF_velocity.Tf = 0.01;
|
|
|
|
|
|
|
|
|
|
//设置最大速度限制
|
|
|
|
|
motor.velocity_limit = 40;
|
|
|
|
|
|
|
|
|
|
motor.useMonitoring(Serial);
|
|
|
|
|
|
|
|
|
|
//初始化电机
|
|
|
|
|
motor.init();
|
|
|
|
|
|
|
|
|
|
//初始化 FOC
|
|
|
|
|
motor.initFOC();
|
|
|
|
|
|
|
|
|
|
Serial.println(F("Motor ready."));
|
|
|
|
|
Serial.println(F("Set the target velocity using serial terminal:"));
|
|
|
|
|
|
|
|
|
|
|
2021-08-25 08:23:23 +00:00
|
|
|
|
}
|
|
|
|
|
char s[255];
|
|
|
|
|
int t_v;
|
|
|
|
|
int lim_v = 20;
|
2021-08-17 17:01:19 +00:00
|
|
|
|
void loop() {
|
2021-08-25 08:23:23 +00:00
|
|
|
|
while (i2cRead(0x3B, i2cData, 14));
|
|
|
|
|
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
|
|
|
|
|
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
|
|
|
|
|
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
|
|
|
|
|
tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]);
|
|
|
|
|
gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]);
|
|
|
|
|
gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]);
|
|
|
|
|
gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]);
|
|
|
|
|
|
|
|
|
|
double dt = (double)(micros() - timer) / 1000000; // Calculate delta time
|
|
|
|
|
timer = micros();
|
|
|
|
|
|
|
|
|
|
double pitch = acc2rotation(accX, accY);
|
|
|
|
|
double gyroZrate = gyroZ / 131.0; // Convert to deg/s
|
|
|
|
|
|
|
|
|
|
kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt);
|
|
|
|
|
gyroZangle += (gyroZrate + gyroZ_OFF) * dt;
|
|
|
|
|
compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch;
|
|
|
|
|
|
|
|
|
|
// Reset the gyro angle when it has drifted too much
|
|
|
|
|
if (gyroZangle < -180 || gyroZangle > 180)
|
|
|
|
|
gyroZangle = kalAngleZ;
|
|
|
|
|
|
|
|
|
|
sprintf(s, "%.2f",kalAngleZ); //将100转为16进制表示的字符串
|
|
|
|
|
// target_velocity = -angle_pid(kalAngleZ);
|
|
|
|
|
// if (abs(target_velocity)>lim_v)
|
|
|
|
|
// target_velocity = -target_velocity;
|
|
|
|
|
// if (target_velocity >lim_v)
|
|
|
|
|
// target_velocity = lim_v;
|
|
|
|
|
// if (target_velocity<-lim_v)
|
|
|
|
|
// target_velocity = -lim_v;
|
|
|
|
|
|
|
|
|
|
Serial.print(motor.shaft_velocity);Serial.print("\t");
|
|
|
|
|
Serial.print(target_velocity);Serial.print("\t");
|
|
|
|
|
Serial.print(target_angle);Serial.print("\t");
|
|
|
|
|
Serial.print(kalAngleZ);Serial.print("\t");
|
|
|
|
|
Serial.print("\r\n");
|
2021-08-17 17:01:19 +00:00
|
|
|
|
motor.loopFOC();
|
|
|
|
|
motor.move(target_velocity);
|
2021-08-25 08:23:23 +00:00
|
|
|
|
//可以使用该方法广播信息
|
|
|
|
|
IPAddress broadcastAddr((~(uint32_t)WiFi.subnetMask())|((uint32_t)WiFi.localIP())); //计算广播地址
|
|
|
|
|
udp.writeTo((const unsigned char*)s, strlen(s), broadcastAddr, localUdpPort); //广播数据
|
|
|
|
|
}
|
|
|
|
|
/* mpu6050加速度转换为角度
|
|
|
|
|
acc2rotation(ax, ay)
|
|
|
|
|
acc2rotation(az, ay) */
|
|
|
|
|
double acc2rotation(double x, double y)
|
|
|
|
|
{
|
|
|
|
|
if (y < 0)
|
|
|
|
|
{
|
|
|
|
|
return atan(x / y) / 1.570796 * 90 + 180;
|
|
|
|
|
}
|
|
|
|
|
else if (x < 0)
|
|
|
|
|
{
|
|
|
|
|
return (atan(x / y) / 1.570796 * 90 + 360);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
return (atan(x / y) / 1.570796 * 90);
|
|
|
|
|
}
|
|
|
|
|
}
|
2021-08-17 17:01:19 +00:00
|
|
|
|
|
2021-08-25 08:23:23 +00:00
|
|
|
|
unsigned long lastTime;
|
|
|
|
|
double errSum, lastErr;
|
|
|
|
|
int angle_pid(double now_angle)
|
|
|
|
|
{
|
|
|
|
|
/*How long since we last calculated*/
|
|
|
|
|
unsigned long now = millis();
|
|
|
|
|
double timeChange = (double)(now - lastTime);
|
|
|
|
|
|
|
|
|
|
/*Compute all the working error variables*/
|
|
|
|
|
double error = target_angle-now_angle;
|
|
|
|
|
errSum += (error * timeChange);
|
|
|
|
|
double dErr = (error - lastErr) / timeChange;
|
|
|
|
|
|
|
|
|
|
/*Compute PID Output*/
|
|
|
|
|
int Output = PID_P * error + PID_I * errSum + PID_D * dErr;
|
|
|
|
|
|
|
|
|
|
/*Remember some variables for next time*/
|
|
|
|
|
lastErr = error;
|
|
|
|
|
lastTime = now;
|
|
|
|
|
return Output;
|
2021-08-17 17:01:19 +00:00
|
|
|
|
}
|