8.26直立完成

master
zrg 2021-08-26 01:15:13 +08:00
parent c8ae6eecc0
commit 9bf2469cb1
1 changed files with 106 additions and 46 deletions

View File

@ -12,13 +12,17 @@ Deng's FOC 闭环速度控制例程 测试库SimpleFOC 2.1.1 测试硬件:
#include <Kalman.h> // Source: https://github.com/TKJElectronics/KalmanFilter
Kalman kalmanZ;
#define gyroZ_OFF -0.72
#define swing_up_voltage 10 //V
#define balance_voltage 10 //V
/* ----IMU Data---- */
float PID_P = 8; //
float PID_P = 1; //
float PID_I = 0; //
float PID_D = 0; //
double accX, accY, accZ;
double gyroX, gyroY, gyroZ;
int16_t tempRaw;
bool stable = 0;
uint32_t last_unstable_time;
double gyroZangle; // Angle calculate using the gyro only
double compAngleZ; // Calculated angle using a complementary filter
@ -30,7 +34,7 @@ uint8_t i2cData[14]; // Buffer for I2C data
// driver instance
double acc2rotation(double x, double y);
float constrainAngle(float x);
const char *ssid = "esp32";
const char *password = "12345678";
@ -42,11 +46,16 @@ unsigned int broadcastPort = localUdpPort;
MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C);
TwoWire I2Ctwo = TwoWire(1);
PIDController angle_pid = PIDController(PID_P, PID_I, PID_D, balance_voltage * 0.7, 20000);
LowPassFilter lpf_throttle{0.00};
//倒立摆参数
float LQR_K1 = 200; //摇摆到平衡
float LQR_K2 = 15; //
float LQR_K3 = 0.15; //
float LQR_K1 = 500; //摇摆到平衡
float LQR_K2 = 40; //
float LQR_K3 = 0.30; //
float LQR_K1_1 = 200; //平衡态
float LQR_K2_1 = 15; //
float LQR_K3_1 = 0.15; //
//电机参数
BLDCMotor motor = BLDCMotor(5);
@ -54,8 +63,9 @@ BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25, 22);
//命令设置
int target_velocity = 0;
int target_angle = 149;
double target_velocity = 0;
double target_angle = 31;
double target_voltage = 0;
void onPacketCallBack(AsyncUDPPacket packet)
{
target_velocity = atoi((char*)(packet.data()));
@ -63,7 +73,11 @@ void onPacketCallBack(AsyncUDPPacket packet)
Serial.println(target_velocity);
// packet.print("reply data");
}
// instantiate the commander
Commander command = Commander(Serial);
void onp(char* cmd) { command.scalar(&PID_P, cmd); }
void oni(char* cmd) { command.scalar(&PID_I, cmd); }
void ond(char* cmd) { command.scalar(&PID_D, cmd); }
void setup() {
Serial.begin(115200);
@ -130,11 +144,11 @@ void setup() {
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;
//运动控制模式设置
motor.controller = MotionControlType::velocity;
motor.controller = MotionControlType::torque;
//速度PI环设置
motor.PID_velocity.P = 1.5;
motor.PID_velocity.I = 20;
// //速度PI环设置
// motor.PID_velocity.P = 2;
// motor.PID_velocity.I = 20;
//最大电机限制电机
motor.voltage_limit = 12;
@ -153,6 +167,9 @@ void setup() {
//初始化 FOC
motor.initFOC();
command.add('P', onp, "newKP");
command.add('I', oni, "newKI");
command.add('D', ond, "newKD");
Serial.println(F("Motor ready."));
Serial.println(F("Set the target velocity using serial terminal:"));
@ -160,8 +177,12 @@ void setup() {
}
char s[255];
int t_v;
int lim_v = 20;
int lim_v = 30;
long loop_count = 0;
void loop() {
motor.loopFOC();
if (loop_count++ == 10)
{
while (i2cRead(0x3B, i2cData, 14));
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
@ -186,24 +207,39 @@ void loop() {
gyroZangle = kalAngleZ;
sprintf(s, "%.2f",kalAngleZ); //将100转为16进制表示的字符串
// target_velocity = -angle_pid(kalAngleZ);
// if (abs(target_velocity)>lim_v)
// target_velocity = -target_velocity;
// if (target_velocity >lim_v)
// target_velocity = lim_v;
// if (target_velocity<-lim_v)
// target_velocity = -lim_v;
float pendulum_angle = constrainAngle((fmod(kalAngleZ * 3, 360.0) / 3.0 - target_angle) / 57.29578);
if (abs(pendulum_angle) < 0.6) // if angle small enough stabilize 0.5~30°,1.5~90°
{
target_voltage = controllerLQR(angle_pid(pendulum_angle), gyroZrate / 57.29578, motor.shaftVelocity());
}
else // else do swing-up
{ // sets 1.5V to the motor in order to swing up
target_voltage = -_sign(gyroZrate) * swing_up_voltage;
}
// set the target voltage to the motor
if (accZ < -13000 && ((accX * accX + accY * accY) > (14000 * 14000)))
{
motor.move(0);
}
else
{
motor.move(lpf_throttle(target_voltage));
}
Serial.print(motor.shaft_velocity);Serial.print("\t");
Serial.print(target_velocity);Serial.print("\t");
Serial.print(target_voltage);Serial.print("\t");
Serial.print(target_angle);Serial.print("\t");
Serial.print(kalAngleZ);Serial.print("\t");
Serial.print(pendulum_angle+target_angle);Serial.print("\t");
Serial.print(gyroZrate);Serial.print("\t");
Serial.print("\r\n");
motor.loopFOC();
motor.move(target_velocity);
motor.move(lpf_throttle(target_voltage));
// motor.move(target_velocity);
//可以使用该方法广播信息
IPAddress broadcastAddr((~(uint32_t)WiFi.subnetMask())|((uint32_t)WiFi.localIP())); //计算广播地址
udp.writeTo((const unsigned char*)s, strlen(s), broadcastAddr, localUdpPort); //广播数据
loop_count = 0;
}
command.run();
}
/* mpu6050加速度转换为角度
acc2rotation(ax, ay)
@ -223,25 +259,49 @@ double acc2rotation(double x, double y)
return (atan(x / y) / 1.570796 * 90);
}
}
unsigned long lastTime;
double errSum, lastErr;
int angle_pid(double now_angle)
// function constraining the angle in between -pi and pi, in degrees -180 and 180
float constrainAngle(float x)
{
/*How long since we last calculated*/
unsigned long now = millis();
double timeChange = (double)(now - lastTime);
/*Compute all the working error variables*/
double error = target_angle-now_angle;
errSum += (error * timeChange);
double dErr = (error - lastErr) / timeChange;
/*Compute PID Output*/
int Output = PID_P * error + PID_I * errSum + PID_D * dErr;
/*Remember some variables for next time*/
lastErr = error;
lastTime = now;
return Output;
x = fmod(x + M_PI, _2PI);
if (x < 0)
x += _2PI;
return x - M_PI;
}
// LQR stabilization controller functions
// calculating the voltage that needs to be set to the motor in order to stabilize the pendulum
float controllerLQR(float p_angle, float p_vel, float m_vel)
{
// if angle controllable
// calculate the control law
// LQR controller u = k*x
// - k = [40, 7, 0.3]
// - k = [13.3, 21, 0.3]
// - x = [pendulum angle, pendulum velocity, motor velocity]'
if (abs(p_angle) > 0.05)
{
last_unstable_time = millis();
stable = 0;
}
if ((millis() - last_unstable_time) > 1000)
{
stable = 1;
}
//Serial.println(stable);
float u;
if (!stable)
{
u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
}
else
{
//u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
u = LQR_K1_1 * p_angle + LQR_K2_1 * p_vel + LQR_K3_1 * m_vel;
}
// limit the voltage set to the motor
if (abs(u) > motor.voltage_limit * 0.7)
u = _sign(u) * motor.voltage_limit * 0.7;
return u;
}