/** arduino开发环境-灯哥开源FOChttps://gitee.com/ream_d/Deng-s-foc-controller,并安装Kalman。 FOC引脚32, 33, 25, 22 22为enable AS5600霍尔传感器 SDA-23 SCL-5 MPU6050六轴传感器 SDA-19 SCL-18 本程序有两种平衡方式, FLAG_V为1时使用电压控制,为0时候速度控制。电压控制时LQR参数使用K1和K2,速度控制时LQR参数使用K3和K4 在wifi上位机窗口中输入:TA+角度,就可以修改平衡角度 比如让平衡角度为90度,则输入:TA90,并且会存入eeprom的位置0中 注:wifi发送命令不能过快,因为每次都会保存进eeprom 在使用自己的电机时,请一定记得修改默认极对数,即 BLDCMotor(5) 中的值,设置为自己的极对数数字,磁铁数量/2 程序默认设置的供电电压为 12V,用其他电压供电请记得修改 voltage_power_supply , voltage_limit 变量中的值 默认PID针对的电机是 GB2204 ,使用自己的电机需要修改PID参数,才能实现更好效果 */ #include #include "Command.h" #include #include //引用以使用异步UDP #include "Kalman.h" // Source: https://github.com/TKJElectronics/KalmanFilter #include "EEPROM.h" Kalman kalmanZ; #define gyroZ_OFF -0.19 /* ----IMU Data---- */ double accX, accY, accZ; double gyroX, gyroY, gyroZ; int16_t tempRaw; bool stable = 0; uint32_t last_unstable_time; double gyroZangle; // Angle calculate using the gyro only double compAngleZ; // Calculated angle using a complementary filter double kalAngleZ; // Calculated angle using a Kalman filter uint32_t timer; uint8_t i2cData[14]; // Buffer for I2C data /* ----FOC Data---- */ // driver instance double acc2rotation(double x, double y); float constrainAngle(float x); const char *ssid = "esp32"; const char *password = "12345678"; bool wifi_flag = 0; AsyncUDP udp; //创建UDP对象 unsigned int localUdpPort = 2333; //本地端口号 void wifi_print(char * s,double num); MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C); TwoWire I2Ctwo = TwoWire(1); LowPassFilter lpf_throttle{0.00}; //倒立摆参数 float LQR_K3_1 = 10; //摇摆到平衡 float LQR_K3_2 = 1.7; // float LQR_K3_3 = 1.75; // float LQR_K4_1 = 2.4; //摇摆到平衡 float LQR_K4_2 = 1.5; // float LQR_K4_3 = 1.42; // //电机参数 BLDCMotor motor = BLDCMotor(5); BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25, 22); float target_velocity = 0; float target_angle = 89.3; float target_voltage = 0; float swing_up_voltage = 1.8; float swing_up_angle = 20; float v_i_1 = 20; float v_p_1 = 0.5; float v_i_2 = 10; float v_p_2 = 0.2; //命令设置 Command comm; bool Motor_enable_flag = 0; int test_flag = 0; void do_TA(char* cmd) { comm.scalar(&target_angle, cmd);EEPROM.writeFloat(0, target_angle); } void do_SV(char* cmd) { comm.scalar(&swing_up_voltage, cmd); EEPROM.writeFloat(4, swing_up_voltage); } void do_SA(char* cmd) { comm.scalar(&swing_up_angle, cmd);EEPROM.writeFloat(8, swing_up_angle); } void do_START(char* cmd) { wifi_flag = !wifi_flag; } void do_MOTOR(char* cmd) { if(Motor_enable_flag) motor.enable(); else motor.disable(); Motor_enable_flag = !Motor_enable_flag; } void do_TVQ(char* cmd) { if(test_flag == 1) test_flag = 0; else test_flag = 1; } void do_TVV(char* cmd) { if(test_flag == 2) test_flag = 0; else test_flag = 2; } void do_VV(char* cmd) { comm.scalar(&target_velocity, cmd); } void do_VQ(char* cmd) { comm.scalar(&target_voltage, cmd); } void do_vp1(char* cmd) { comm.scalar(&v_p_1, cmd); EEPROM.writeFloat(12, v_p_1);} void do_vi1(char* cmd) { comm.scalar(&v_i_1, cmd);EEPROM.writeFloat(16, v_i_1); } void do_vp2(char* cmd) { comm.scalar(&v_p_2, cmd); EEPROM.writeFloat(20, v_p_2);} void do_vi2(char* cmd) { comm.scalar(&v_i_2, cmd);EEPROM.writeFloat(24, v_i_2); } void do_tv(char* cmd) { comm.scalar(&target_velocity, cmd); } void do_K31(char* cmd) { comm.scalar(&LQR_K3_1, cmd); } void do_K32(char* cmd) { comm.scalar(&LQR_K3_2, cmd); } void do_K33(char* cmd) { comm.scalar(&LQR_K3_3, cmd); } void do_K41(char* cmd) { comm.scalar(&LQR_K4_1, cmd); } void do_K42(char* cmd) { comm.scalar(&LQR_K4_2, cmd); } void do_K43(char* cmd) { comm.scalar(&LQR_K4_3, cmd); } void onPacketCallBack(AsyncUDPPacket packet) { char* da; da= (char*)(packet.data()); Serial.println(da); comm.run(da); EEPROM.commit(); // packet.print("reply data"); } // instantiate the commander void setup() { Serial.begin(115200); if (!EEPROM.begin(1000)) { Serial.println("Failed to initialise EEPROM"); Serial.println("Restarting..."); delay(1000); ESP.restart(); } // eeprom 读取 int k,j; j = 0; for(k=0;k<=24;k=k+4) { float nan = EEPROM.readFloat(k); if(isnan(nan)) { j = 1; Serial.println("frist write"); EEPROM.writeFloat(0, target_angle); delay(10);EEPROM.commit(); EEPROM.writeFloat(4, swing_up_voltage); delay(10);EEPROM.commit(); EEPROM.writeFloat(8, swing_up_angle); delay(10);EEPROM.commit(); EEPROM.writeFloat(12, v_p_1); delay(10);EEPROM.commit(); EEPROM.writeFloat(16, v_i_1); delay(10);EEPROM.commit(); EEPROM.writeFloat(20, v_p_2); delay(10);EEPROM.commit(); EEPROM.writeFloat(24, v_i_2); delay(10);EEPROM.commit(); } } if(j == 0) { target_angle = EEPROM.readFloat(0); swing_up_voltage = EEPROM.readFloat(4); swing_up_angle = EEPROM.readFloat(8); v_p_1 = EEPROM.readFloat(12); v_i_1 = EEPROM.readFloat(16); v_p_2 = EEPROM.readFloat(20); v_i_2 = EEPROM.readFloat(24); motor.PID_velocity.P = v_p_1; motor.PID_velocity.I = v_i_1; } //命令设置 comm.add("TA",do_TA); comm.add("START",do_START); comm.add("MOTOR",do_MOTOR); comm.add("SV",do_SV); comm.add("SA",do_SA); comm.add("TVQ",do_TVQ); comm.add("TVV",do_TVV); comm.add("VV",do_VV); comm.add("VQ",do_VQ); //速度环参数 comm.add("VP1",do_vp1); comm.add("VI1",do_vi1); comm.add("VP2",do_vp2); comm.add("VI2",do_vi2); comm.add("TV",do_tv); comm.add("K31",do_K31); comm.add("K32",do_K32); comm.add("K33",do_K33); comm.add("K41",do_K41); comm.add("K42",do_K42); comm.add("K43",do_K43); // kalman mpu6050 init Wire.begin(19, 18,400000);// Set I2C frequency to 400kHz i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g while (i2cWrite(0x19, i2cData, 4, false)) ; // Write to all four registers at once while (i2cWrite(0x6B, 0x01, true)) ; // PLL with X axis gyroscope reference and disable sleep mode while (i2cRead(0x75, i2cData, 1)) ; if (i2cData[0] != 0x68) { // Read "WHO_AM_I" register Serial.print(F("Error reading sensor")); while (1) ; } delay(100); // Wait for sensor to stabilize /* Set kalman and gyro starting angle */ while (i2cRead(0x3B, i2cData, 6)) ; accX = (int16_t)((i2cData[0] << 8) | i2cData[1]); accY = (int16_t)((i2cData[2] << 8) | i2cData[3]); accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]); double pitch = acc2rotation(accX, accY); kalmanZ.setAngle(pitch); gyroZangle = pitch; timer = micros(); Serial.println("kalman mpu6050 init"); //wifi初始化 WiFi.mode(WIFI_AP); while(!WiFi.softAP(ssid, password)){}; //启动AP Serial.println("AP启动成功"); while (!udp.listen(localUdpPort)) //等待udp监听设置成功 { } udp.onPacket(onPacketCallBack); //注册收到数据包事件 I2Ctwo.begin(23, 5, 400000); //SDA,SCL sensor.init(&I2Ctwo); //连接motor对象与传感器对象 motor.linkSensor(&sensor); //供电电压设置 [V] driver.voltage_power_supply = 12; driver.init(); //连接电机和driver对象 motor.linkDriver(&driver); //FOC模型选择 motor.foc_modulation = FOCModulationType::SpaceVectorPWM; //运动控制模式设置 motor.controller = MotionControlType::velocity; //速度PI环设置 motor.PID_velocity.P = v_p_1; motor.PID_velocity.I = v_i_1; //最大电机限制电机 motor.voltage_limit = 12; //速度低通滤波时间常数 motor.LPF_velocity.Tf = 0.02; //设置最大速度限制 motor.velocity_limit = 40; motor.useMonitoring(Serial); //初始化电机 motor.init(); //初始化 FOC motor.initFOC(); Serial.println(F("Motor ready.")); Serial.println(F("Set the target velocity using serial terminal:")); } char buf[255]; long loop_count = 0; double last_pitch; void loop() { motor.loopFOC(); if (1) { // loop_count++ == 10 // loop_count = 0; while (i2cRead(0x3B, i2cData, 14)); accX = (int16_t)((i2cData[0] << 8) | i2cData[1]); accY = (int16_t)((i2cData[2] << 8) | i2cData[3]); accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]); tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]); gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]); gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]); gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]); double dt = (double)(micros() - timer) / 1000000; // Calculate delta time timer = micros(); double pitch = acc2rotation(accX, accY); double gyroZrate = gyroZ / 131.0; // Convert to deg/s if(abs(pitch-last_pitch)>100) kalmanZ.setAngle(pitch); kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt); last_pitch = pitch; gyroZangle += (gyroZrate + gyroZ_OFF) * dt; compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch; // Reset the gyro angle when it has drifted too much if (gyroZangle < -180 || gyroZangle > 180) gyroZangle = kalAngleZ; float pendulum_angle = constrainAngle(fmod(kalAngleZ,120)-target_angle); // pendulum_angle当前角度与期望角度差值,在差值大的时候进行摇摆,差值小的时候LQR控制电机保持平衡 if(test_flag == 0)//正常控制 { if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90° { target_velocity = controllerLQR(pendulum_angle, gyroZrate, motor.shaft_velocity); if (abs(target_velocity) > 140) target_velocity = _sign(target_velocity) * 140; motor.controller = MotionControlType::velocity; motor.move(target_velocity); } else // else do swing-up { // sets swing_up_voltage to the motor in order to swing up motor.controller = MotionControlType::torque; target_voltage = -_sign(gyroZrate) * swing_up_voltage; motor.move(target_voltage); } } else if(test_flag == 1) { motor.controller = MotionControlType::torque; motor.move(target_voltage); } else { motor.controller = MotionControlType::velocity; motor.move(target_velocity); } //串口输出数据部分,不需要的情况可以改为0 #if 1 Serial.print(pitch);Serial.print("\t"); Serial.print(kalAngleZ);Serial.print("\t"); Serial.print(target_voltage);Serial.print("\t"); Serial.print(motor.shaft_velocity);Serial.print("\t"); Serial.print(motor.voltage.q);Serial.print("\t"); Serial.print(target_angle);Serial.print("\t"); Serial.print(pendulum_angle);Serial.print("\t"); Serial.print(gyroZrate);Serial.print("\t"); Serial.print("\r\n"); #endif //可以使用该方法wifi发送udp信息 if(wifi_flag) { memset(buf, 0, strlen(buf)); wifi_print("v", motor.shaft_velocity); wifi_print("vq",motor.voltage.q); wifi_print("p",pendulum_angle); wifi_print("t",target_angle); wifi_print("k",kalAngleZ); wifi_print("g",gyroZrate); udp.writeTo((const unsigned char*)buf, strlen(buf), IPAddress(192,168,4,2), localUdpPort); //广播数据 } } } /* mpu6050加速度转换为角度 acc2rotation(ax, ay) acc2rotation(az, ay) */ double acc2rotation(double x, double y) { double tmp_kalAngleZ = (atan(x / y) / 1.570796 * 90); if (y < 0) { return (tmp_kalAngleZ + 180); } else if (x < 0) { //将当前值与前值比较,当前差值大于100则认为异常 if (!isnan(kalAngleZ) && (tmp_kalAngleZ + 360 - kalAngleZ) > 100) { //Serial.print("X<0"); Serial.print("\t"); //Serial.print(tmp_kalAngleZ); Serial.print("\t"); //Serial.print(kalAngleZ); Serial.print("\t"); //Serial.print("\r\n"); if (tmp_kalAngleZ < 0 && kalAngleZ < 0) //按键右边角 return tmp_kalAngleZ; else //按键边异常处理 return tmp_kalAngleZ; } else return (tmp_kalAngleZ + 360); } else { return tmp_kalAngleZ; } } // function constraining the angle in between -60~60 float constrainAngle(float x) { float a = 0; if(x < 0) { a = 120+x; if(a 5) //摆角大于5则进入非稳态,记录非稳态时间 { last_unstable_time = millis(); if (stable) //如果是稳态进入非稳态则调整为目标角度 { //target_angle = EEPROM.readFloat(0) - p_angle; target_angle = EEPROM.readFloat(0); stable = 0; } } if ((millis() - last_unstable_time) > 1000 && !stable) //非稳态进入稳态超过500ms检测,更新目标角为目标角+摆角,假设进入稳态 { //target_angle -= _sign(target_velocity) * 0.4; target_angle = target_angle+p_angle; stable = 1; } if ((millis() - last_stable_time) > 2500 && stable) { //稳态超过2000ms检测,更新目标角 if (abs(target_velocity) > 5 ) { //稳态速度偏大校正 last_stable_time = millis(); target_angle -= _sign(target_velocity) * 0.2; } } //Serial.println(stable); float u; if (!stable) //非稳态计算 { motor.PID_velocity.P = v_p_1; motor.PID_velocity.I = v_i_1; u = LQR_K3_1 * p_angle + LQR_K3_2 * p_vel + LQR_K3_3 * m_vel; } else { motor.PID_velocity.P = v_p_2; motor.PID_velocity.I = v_i_2; u = LQR_K4_1 * p_angle + LQR_K4_2 * p_vel + LQR_K4_3 * m_vel; } return u; } void wifi_print(char * s,double num) { char str[255]; char n[255]; sprintf(n, "%.2f",num); strcpy(str,s); strcat(str, n); strcat(buf+strlen(buf), str); strcat(buf, ",\0"); }