2012-05-17 22:50:00 +00:00
|
|
|
<!DOCTYPE html>
|
|
|
|
<html>
|
|
|
|
<head>
|
|
|
|
<link rel='stylesheet' href='qunit/qunit.css' type='text/css'/>
|
2012-07-25 06:32:18 +00:00
|
|
|
<script src='../editor/assets/jquery.js'></script>
|
2012-05-17 22:50:00 +00:00
|
|
|
<script type='text/javascript' src='../editor/math.js'></script>
|
|
|
|
<script type='text/javascript' src='qunit/qunit.js'></script>
|
|
|
|
<script type='text/javascript'>
|
|
|
|
$(function() {
|
|
|
|
// log function
|
|
|
|
QUnit.log = function(result, message) {
|
|
|
|
if (window.console && window.console.log) {
|
|
|
|
window.console.log(result +' :: '+ message);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
var svgns = 'http://www.w3.org/2000/svg';
|
|
|
|
var svg = document.createElementNS(svgns, 'svg');
|
|
|
|
|
|
|
|
module('svgedit.math');
|
|
|
|
|
|
|
|
test('Test svgedit.math package', function() {
|
|
|
|
expect(7);
|
|
|
|
|
|
|
|
ok(svgedit.math);
|
|
|
|
ok(svgedit.math.transformPoint);
|
|
|
|
ok(svgedit.math.isIdentity);
|
|
|
|
ok(svgedit.math.matrixMultiply);
|
|
|
|
equals(typeof svgedit.math.transformPoint, typeof function(){});
|
|
|
|
equals(typeof svgedit.math.isIdentity, typeof function(){});
|
|
|
|
equals(typeof svgedit.math.matrixMultiply, typeof function(){});
|
|
|
|
});
|
|
|
|
|
|
|
|
test('Test svgedit.math.transformPoint() function', function() {
|
|
|
|
expect(6);
|
|
|
|
var transformPoint = svgedit.math.transformPoint;
|
|
|
|
|
|
|
|
var m = svg.createSVGMatrix();
|
|
|
|
m.a = 1; m.b = 0;
|
|
|
|
m.c = 0; m.d = 1;
|
|
|
|
m.e = 0; m.f = 0;
|
|
|
|
var pt = transformPoint(100, 200, m);
|
|
|
|
equals(pt.x, 100);
|
|
|
|
equals(pt.y, 200);
|
|
|
|
|
|
|
|
m.e = 300; m.f = 400;
|
|
|
|
pt = transformPoint(100, 200, m);
|
|
|
|
equals(pt.x, 400);
|
|
|
|
equals(pt.y, 600);
|
|
|
|
|
|
|
|
m.a = 0.5; m.b = 0.75;
|
|
|
|
m.c = 1.25; m.d = 2;
|
|
|
|
pt = transformPoint(100, 200, m);
|
|
|
|
equals(pt.x, 100 * m.a + 200 * m.c + m.e);
|
|
|
|
equals(pt.y, 100 * m.b + 200 * m.d + m.f);
|
|
|
|
});
|
|
|
|
|
|
|
|
test('Test svgedit.math.isIdentity() function', function() {
|
|
|
|
expect(2);
|
|
|
|
|
|
|
|
ok(svgedit.math.isIdentity(svg.createSVGMatrix()));
|
|
|
|
|
|
|
|
var m = svg.createSVGMatrix();
|
|
|
|
m.a = 1; m.b = 0;
|
|
|
|
m.c = 0; m.d = 1;
|
|
|
|
m.e = 0; m.f = 0;
|
|
|
|
ok(svgedit.math.isIdentity(m));
|
|
|
|
});
|
|
|
|
|
|
|
|
test('Test svgedit.math.matrixMultiply() function', function() {
|
|
|
|
expect(5);
|
|
|
|
var mult = svgedit.math.matrixMultiply;
|
|
|
|
var isIdentity = svgedit.math.isIdentity;
|
|
|
|
|
|
|
|
// translate there and back
|
|
|
|
var tr_1 = svg.createSVGMatrix().translate(100,50),
|
|
|
|
tr_2 = svg.createSVGMatrix().translate(-90,0),
|
|
|
|
tr_3 = svg.createSVGMatrix().translate(-10,-50),
|
|
|
|
I = mult(tr_1,tr_2,tr_3);
|
|
|
|
ok(isIdentity(I), 'Expected identity matrix when translating there and back');
|
|
|
|
|
|
|
|
// rotate there and back
|
|
|
|
// TODO: currently Mozilla fails this when rotating back at -50 and then -40 degrees
|
|
|
|
// (b and c are *almost* zero, but not zero)
|
|
|
|
var rot_there = svg.createSVGMatrix().rotate(90),
|
|
|
|
rot_back = svg.createSVGMatrix().rotate(-90); // TODO: set this to -50
|
|
|
|
rot_back_more = svg.createSVGMatrix().rotate(0); // TODO: set this to -40
|
|
|
|
I = mult(rot_there, rot_back, rot_back_more);
|
|
|
|
ok(isIdentity(I), 'Expected identity matrix when rotating there and back');
|
|
|
|
|
|
|
|
// scale up and down
|
|
|
|
var scale_up = svg.createSVGMatrix().scale(4),
|
|
|
|
scale_down = svg.createSVGMatrix().scaleNonUniform(0.25,1);
|
|
|
|
scale_down_more = svg.createSVGMatrix().scaleNonUniform(1,0.25);
|
|
|
|
I = mult(scale_up, scale_down, scale_down_more);
|
|
|
|
ok(isIdentity(I), 'Expected identity matrix when scaling up and down');
|
|
|
|
|
|
|
|
// test multiplication with its inverse
|
|
|
|
I = mult(rot_there, rot_there.inverse());
|
|
|
|
ok(isIdentity(I), 'Expected identity matrix when multiplying a matrix by its inverse');
|
|
|
|
I = mult(rot_there.inverse(), rot_there);
|
|
|
|
ok(isIdentity(I), 'Expected identity matrix when multiplying a matrix by its inverse');
|
|
|
|
});
|
|
|
|
});
|
|
|
|
</script>
|
|
|
|
</head>
|
|
|
|
<body>
|
|
|
|
<h1 id='qunit-header'>Unit Tests for math.js</h1>
|
|
|
|
<h2 id='qunit-banner'></h2>
|
|
|
|
<h2 id='qunit-userAgent'></h2>
|
|
|
|
<ol id='qunit-tests'>
|
|
|
|
</ol>
|
|
|
|
</body>
|
|
|
|
</html>
|